Skip to main content

This lesson gives an introduction to the Mathematics chapter of Datalabcc's Foundations in Data Science series.

Difficulty level: Beginner
Duration: 2:53
Speaker: : Barton Poulson

This lesson serves a primer on elementary algebra.

Difficulty level: Beginner
Duration: 3:03
Speaker: : Barton Poulson

This lesson provides a primer on linear algebra, aiming to demonstrate how such operations are fundamental to many data science. 

Difficulty level: Beginner
Duration: 5:38
Speaker: : Barton Poulson

In this lesson, users will learn about linear equation systems, as well as follow along some practical use cases.

Difficulty level: Beginner
Duration: 5:24
Speaker: : Barton Poulson

This talk gives a primer on calculus, emphasizing its role in data science.

Difficulty level: Beginner
Duration: 4:17
Speaker: : Barton Poulson

This lesson clarifies how calculus relates to optimization in a data science context. 

Difficulty level: Beginner
Duration: 8:43
Speaker: : Barton Poulson

This lesson covers Big O notation, a mathematical notation that describes the limiting behavior of a function as it tends towards a certain value or infinity, proving useful for data scientists who want to evaluate their algorithms' efficiency.

Difficulty level: Beginner
Duration: 5:19
Speaker: : Barton Poulson

This lesson serves as a primer on the fundamental concepts underlying probability. 

Difficulty level: Beginner
Duration: 7:33
Speaker: : Barton Poulson

Serving as good refresher, this lesson explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.

This compilation is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 1:00:07
Speaker: : Shawn Grooms

This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.

This lesson was created by RootMath.

Difficulty level: Beginner
Duration: 1:21:30
Speaker: :
Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

 

Difficulty level: Intermediate
Duration:
Speaker: :

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity. 

Difficulty level: Beginner
Duration: 1:06:35
Speaker: : Laura Sikstrom

This lesson is the first part of a three-part series on the development of neuroinformatic infrastructure to ensure compliance with European data privacy standards and laws. 

Difficulty level: Beginner
Duration: 1:10:05
Speaker: : Michael Schirner

This is the second of three lectures around current challenges and opportunities facing neuroinformatic infrastructure for handling sensitive data. 

Difficulty level: Beginner
Duration: 48:26
Speaker: : Michael Schirner

This lesson contains the first part of the lecture Data Science and Reproducibility. You will learn about the development of data science and what the term currently encompasses, as well as how neuroscience and data science intersect. 

Difficulty level: Beginner
Duration: 32:18
Speaker: : Ariel Rokem

This lecture gives a tour of what neuroethics is and how it applies to neuroscience and neurotechnology, while also addressing justice concerns within both fields. 

Difficulty level: Beginner
Duration: 58:45
Speaker: : Tim Brown

This lecture presents selected theories of ethics as applied to questions raised by the Human Brain Project.

Difficulty level: Beginner
Duration: 38:49

The HBP as an ICT flagship project crucially relies on ICT and will contribute important input into the development of new computing principles and artefacts. Individuals working on the HBP should therefore be aware of the long history of ethical issues discussed in computing. This lessson provides an overview of the most widely discussed ethical issues in computing and demonstrate that privacy and data protection are by no means the only issue worth worrying about. 

Difficulty level: Beginner
Duration: 46:12
Speaker: : Bernd Stahl

This lecture explores two questions regarding the ethics of robot development and use. Firstly, the increasingly urgent question of the ethical use of robots: are there particular applications of robots that should be proscribed, in eldercare, or surveillance, or combat? Secondly, the talk deals with the longer-term question of whether intelligent robots themselves could or should be ethical.

Difficulty level: Beginner
Duration: 31:35
Speaker: : Alan Winfield