Skip to main content

This lecture contains an overview of the China-Cuba-Canada neuroinformatics ecosystem for Quantitative Tomographic EEG Analysis (qEEGt).

Difficulty level: Beginner
Duration: 12:56

This lesson gives an introduction to the Mathematics chapter of Datalabcc's Foundations in Data Science series.

Difficulty level: Beginner
Duration: 2:53
Speaker: : Barton Poulson

This lesson serves a primer on elementary algebra.

Difficulty level: Beginner
Duration: 3:03
Speaker: : Barton Poulson

This lesson provides a primer on linear algebra, aiming to demonstrate how such operations are fundamental to many data science. 

Difficulty level: Beginner
Duration: 5:38
Speaker: : Barton Poulson

In this lesson, users will learn about linear equation systems, as well as follow along some practical use cases.

Difficulty level: Beginner
Duration: 5:24
Speaker: : Barton Poulson

This talk gives a primer on calculus, emphasizing its role in data science.

Difficulty level: Beginner
Duration: 4:17
Speaker: : Barton Poulson

This lesson clarifies how calculus relates to optimization in a data science context. 

Difficulty level: Beginner
Duration: 8:43
Speaker: : Barton Poulson

This lesson covers Big O notation, a mathematical notation that describes the limiting behavior of a function as it tends towards a certain value or infinity, proving useful for data scientists who want to evaluate their algorithms' efficiency.

Difficulty level: Beginner
Duration: 5:19
Speaker: : Barton Poulson

This lesson serves as a primer on the fundamental concepts underlying probability. 

Difficulty level: Beginner
Duration: 7:33
Speaker: : Barton Poulson

Serving as good refresher, this lesson explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.

This compilation is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 1:00:07
Speaker: : Shawn Grooms

This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.

This lesson was created by RootMath.

Difficulty level: Beginner
Duration: 1:21:30
Speaker: :
Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training.  ​​​Journal of Open Source Education5(47), 146. https://doi.org/10.21105/jose.00146

 

Difficulty level: Intermediate
Duration:
Speaker: :