This video gives a brief introduction to Neuro4ML's lessons on neuromorphic computing - the use of specialized hardware which either directly mimics brain function or is inspired by some aspect of the way the brain computes.
In this lesson, you will learn in more detail about neuromorphic computing, that is, non-standard computational architectures that mimic some aspect of the way the brain works.
This video provides a very quick introduction to some of the neuromorphic sensing devices, and how they offer unique, low-power applications.
This lecture covers modeling the neuron in silicon, modeling vision and audition, and sensory fusion using a deep network.
This lesson presents a simulation software for spatial model neurons and their networks designed primarily for GPUs.
This lesson gives an overview of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.
This lecture covers visualizing extracellular neurotransmitter dynamics
This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.
This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.
This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication?
This lecture consists of the second half of the introduction to signal transduction, here focusing on cell receptors and signalling cascades.
In this lesson, you will learn about GABAergic interneurons and local inhibition on the circuit level.
This lecture provides an introduction to the course "Cognitive Science & Psychology: Mind, Brain, and Behavior".
This lecture covers the emergence of cognitive science after the Second World War as an interdisciplinary field for studying the mind, with influences from anthropology, cybernetics, and artificial intelligence.
This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain.
This lecture outlines various approaches to studying Mind, Brain, and Behavior.
This lecture covers the history of behaviorism and the ultimate challenge to behaviorism.
This lecture covers various learning theories.