Skip to main content

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate
Duration: 1:26

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate
Duration: 0:42

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 2:40

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate
Duration: 2:54

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 1:43

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate
Duration: 2:58

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate
Duration: 2:08

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate
Duration: 1:58

This lesson describes short-term depression, a reduction of synaptic information transfer between neurons.

Difficulty level: Intermediate
Duration: 1:40

This lesson briefly wraps up the course on Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate
Duration: 0:37

This lesson provides an introduction the International Neuroinformatics Coordinating Facility (INCF), its mission towards FAIR neuroscience, and future directions. 

Difficulty level: Beginner
Duration: 20:29
Speaker: : Maryann Martone

This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles. 

Difficulty level: Beginner
Duration: 25:44
Speaker: : Fahim Imam

This is the third and final lecture of this course on neuroinformatics infrastructure for handling sensitive data. 

Difficulty level: Beginner
Duration: 1:11:22
Speaker: : Michael Schirner

In this lecture, you will learn about virtual research environments (VREs) and their technical limitations, (i.e., a computing platform and the software stack behind it) and the security measures which should be considered during implementation. 

Difficulty level: Beginner
Duration: 1:06:50
Speaker: : Marc Sacks

This lesson consists of a panel discussion, wrapping up the INCF Neuroinformatics Assembly 2023 workshop Research Workflows for Collaborative Neuroscience

Difficulty level: Beginner
Duration: 25:33
Speaker: :

This brief talk outlines the obstacles and opportunities involved in striving for more open and reproducible publishing, highlighting the need for investment in the technical and governance sectors of FAIR data and software. 

Difficulty level: Beginner
Duration: 8:38

This brief video provides a welcome and short introduction to the outline of the INCF Short Course in Neuroinformatics, held Seattle, Washington in October 2023, in coordination with the West Big Data Hub and the University of Washington. 

Difficulty level: Beginner
Duration: 4:58
Speaker: : Ariel Rokem

This opening lecture from INCF's Short Course in Neuroinformatics provides an overview of the field of neuroinformatics itself, as well as laying out an argument for the necessity for developing more sophisticated approaches towards FAIR data management principles in neuroscience. 

Difficulty level: Beginner
Duration: 1:19:14
Speaker: : Maryann Martone

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe