Skip to main content

This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.

Difficulty level: Intermediate
Duration: 47:00
Speaker: : Dimitri Yatsenko

This lesson provides an introduction to the Symposium on Science Management at the Canadian Association for Neuroscience 2019 Meeting.

Difficulty level: Beginner
Duration: 9:52
Speaker: : Randy McIntosh

This lesson gives a primer to project management in a scientific context, with a particular neuroinformatic case study. 

Difficulty level: Beginner
Duration: 19:06
Speaker: : Kelly Shen

In this lesson, you will hear about the current challenges regarding data management, as well as policies and resources aimed to address them. 

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

This lesson covers "Knowledge Translation", the activities involved in moving research from the laboratory, the research journal, and the academic conference into the hands of people and organizations who can put it to practical use.

Difficulty level: Beginner
Duration: 15:05
Speaker: : Jordan Antflick

In this lesson, you will hear about the various methods developed and employed in managing performance. 

Difficulty level: Beginner
Duration: 12:57

This lesson provides an overview of how to manage relationships in a research context, while highlighting the need for effective communication at various levels.

Difficulty level: Beginner
Duration:
Speaker: : Helena Ledmyr

In this lesson you will hear a panel discussion which hosts experts in the field whom have extensive experience with management in a science setting.

Difficulty level: Beginner
Duration: 54:38
Speaker: :
Course:

This session will include presentations of infrastructure that embrace the FAIR principles developed by members of the INCF Community. This lecture provides an overview and demo of the Canadian Open Neuroscience Platform (CONP).

Difficulty level: Beginner
Duration: 14:02
Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training.  ​​​Journal of Open Source Education5(47), 146. https://doi.org/10.21105/jose.00146

 

Difficulty level: Intermediate
Duration:
Speaker: :