Bayesian inference (using prior knowledge to generate more accurate predictions about future events or outcomes) has become increasingly applied to the fields of neuroscience and neuroinformatics. In this course, participants are taught how Bayesian statistics may be used to build cognitive models of processes like learning or perception. This course also offers theoretical and practical instruction on dynamic causal modeling as applied to fMRI and EEG data.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.
As technological improvements continue to facilitate innovations in the mental health space, researchers and clinicians are faced with novel opportunities and challenges regarding study design, diagnoses, treatments, and follow-up care. This course includes a lecture outlining these new developments, as well as a workshop which introduces users to Synapse, an open-source platform for collaborative data analysis.
This course consists of a three-part session from the second day of INCF's Neuroinformatics Assembly 2023. The lessons describe various on-going efforts within the fields of neuroinformatics and clinical neuroscience to adjust to the increasingly vast volumes of brain data being collected and stored.
As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.
The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and F-I curves. The MATLAB code introduces live scripts and functions.
This course consists of two workshops which focus on the need for reproducibility in science, particularly under the umbrella roadmap of FAIR scienctific principles. The tutorials also provide an introduction to some of the most commonly used open-source scientific tools, including Git, GitHub, Google Colab, Binder, Docker, and the programming languages Python and R.
The Neurodata Without Borders: Neurophysiology project (NWB, https://www.nwb.org/) is an effort to standardize the description and storage of neurophysiology data and metadata. NWB enables data sharing and reuse and reduces the energy-barrier to applying data analytics both within and across labs. Several laboratories, including the Allen Institute for Brain Science, have wholeheartedly adopted NWB.
This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.
“Computational Thinking“ refers to a mindset or set of tools used by computational or ICT specialists to describe their work. This course is intended for people outside of the ICT field to allow students to understand the way that computer specialists analyse problems and to introduce students to the basic terminology of the field.
This course contains sessions from the first day of INCF's Neuroinformatics Assembly 2022.
This lecture series is presented by NeuroTechEU, an alliance between eight European universities with the goal to build a trans-European network of excellence in brain research and technologies. By following along with this series, participants will learn about the history of cognitive science and the development of the field in a sociocultural context, as well as its trajectory into the future with the advent of artificial intelligence and neural network development.
There is a growing recognition and adoption of open and FAIR science practices in neuroscience research. This is predominately regarded as scientific progress and has enabled significant opportunities for large, collaborative, team science. The efforts and practical work that go into creating an open and FAIR landscape extend far beyond just the science.
This couse is the opening module for the University of Toronto's Krembil Centre for Neuroinformatics' virtual learning series Solving Problems in Mental Health Using Multi-Scale Computational Neuroscience. Lessons in this course introduce participants to the study of brain disorders, starting from elemental units like genes and neurons, eventually building up to whole-brain modelling and global activity patterns.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.