Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.
This course begins with the conceptual basics of machine learning and then moves on to some Python-based applications of popular supervised learning algorithms to neuroscience data. This is followed by a series of lectures that explore the history and applications of deep learning, ending with a presentation on the potential of deep learning for neuroscience applications/mis-applications.
Sessions from the INCF Neuroinformatics Assembly 2022 Day 3.
This course consists of one lesson and one tutorial, focusing on the neural connectivity measures derived from neuroimaging, specifically from methods like functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI). Additional tools such as tractography and parcellation are discussed in the context of brain connectivity and mental health. The tutorial leads participants through the computation of brain connectomes from fMRI data.
This course consists of several lightning talks from the second day of INCF's Neuroinformatics Assembly 2023. Covering a wide range of topics, these brief talks provide snapshots of various neuroinformatic efforts such as brain-computer interface standards, dealing with multimodal animal MRI datasets, distributed data management, and several more.
The workshop will include interactive seminars given by selected experts in the field covering all aspects of (FAIR) small animal MRI data acquisition, analysis, and sharing. The seminars will be followed by hands-on training where participants will perform use case scenarios using software established by the organizers. This will include an introduction to the basics of using command line interfaces, Python installation, working with Docker/Singularity containers, Datalad/Git, and BIDS.
This introductory-level course provide learners with an introduction to the field of neuroethics and spans the ethics of neuroscience to the neuroscience of ethics. The ethics of neuroscience lectures cover the ethical issues that arise in device/drug enhancement, imaging/monitoring, and social uses of neuroscience in the legal/justice system. The neuroscience of ethics lectures cover the origin of ethics (neural mechanisms and evolutionary origin).
The course provides an introduction to the growing field of electrophysiology standards, infrastructure, and initiatives. From data curation on open research infrastructures like EBRAINS, to overviews of national data analytics platforms like Australia's AEDAPT, the lessons in this course highlight already available resources for the global neuroinformatics commuity while also reinforcing the need for and importance of FAIR science principles in future research projects.
There is a broad consensus among researchers, publishers, and funding bodies that open sharing of data is needed to address major reproducibility and transparency challenges that currently exist in all scientific disciplines. In addition to potentially increasing the utilization of shared data through re-analysis and integration with other data, data sharing is beneficial for individual researchers through data citation and increased exposure of research.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
As research methods and experimental technologies become ever more sophisticated, the amount of health-related data per individual which has become accessible is vast, giving rise to a corresponding need for cross-domain data integration, whole-person modelling, and improved precision medicine. This course provides lessons describing state of the art methods and repositories, as well as a tutorial on computational methods for data integration.
This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.
Presented by the Neuroscience Information Framework (NIF), this series consists of several lectures characterizing cutting-edge, open-source software platforms and computational tools for neuroscientists. This course offers detailed descriptions of various neuroinformatic resources such as cloud-computing services, web-based annotation tools, genome browsers, and platforms for designing and building biophysically detailed models of neurons and neural ensembles.
The emergence of data-intensive science creates a demand for neuroscience educators worldwide to deliver better neuroinformatics education and training in order to raise a generation of modern neuroscientists with FAIR capabilities, awareness of the value of standards and best practices, knowledge in dealing with big datasets, and the ability to integrate knowledge over multiple scales and methods.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccenticity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This workshop hosted by HBP, EBRAINS, and the European Academy of Neurology (EAN) aimed to identify and openly discuss all issues and challenges associated with data sharing in Europe: from ethics to data safety and privacy including those specific to data federation such as the development and validation of federated algorithms.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
Neuromatch Academy aims to introduce traditional and emerging tools of computational neuroscience to trainees.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data. In this course, you will learn about features incorporated into EEGLAB, including independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.
This course consists of three lessons, each corresponding to a lightning talk given at the first day of INCF's Neuroinformatics Assembly 2023. By following along these brief talks, you will hear about topics such as open source tools for computer vision, tools for the integration of various MRI dataset formats, as well as international data governance.