Most who enter the field of computational neuroscience have a prior background in either mathematics, physics, computer science, or (neuro)biology. Since computational neuroscience requires a bit of knowledge from all these fields, with some basic knowledge of neurons and a familiarity with certain types of equations and mathematical concepts, we recommend two different "starting tracks" depending on the student's background before you begin the lectures listed below:
This course corresponds to the third session of talks given at INCF's Neuroinformatics Assembly 2023. In this session, the talks revolve around the idea of cross-platform data integration, discussing processes and solutions for rapidly developing an integrated workflow across independent systems for the US BRAIN Initiative Cell Census.
Sessions from the INCF Neuroinformatics Assembly 2022 day 1.
A number of programming languages are ubiquitous in modern neuroscience and are key to the competence, freedom, and creativity necessary in neuroscience research. This course offers lectures on the fundamentals of data science and specific neuroinformatic tools used in the investigation of brain data. Attendees of this course will be learn about the programming languages Python, R, and MATLAB, as well as their associated packages and software environments.
This workshop provides an opportunity to explore the advanced tools and techniques for data sharing, analysis, visualization, and simulation.
This course contains sessions from the second day of INCF's Neuroinformatics Assembly 2022.
Presented by the Neuroscience Information Framework (NIF), this series consists of several lectures characterizing cutting-edge, open-source software platforms and computational tools for neuroscientists. This course offers detailed descriptions of various neuroinformatic resources such as cloud-computing services, web-based annotation tools, genome browsers, and platforms for designing and building biophysically detailed models of neurons and neural ensembles.
Get up to speed about the fundamental principles of full brain network modeling using the open-source neuroinformatics platform The Virtual Brain (TVB). This simulation environment enables the biologically realistic modeling of whole-brain network dynamics across different brain scales, using personalized structural connectome-based approach.
Course designed for advanced learners interested in understanding the foundations of Machine Learning in Python.
General: The course consists of 15 lectures (ca. 1-2 hours each) and 15 exercise sheets (for ca. 6 hours of programming each).
Institution: High-Performance Computing and Analytics Lab, University of Bonn
As technological improvements continue to facilitate innovations in the mental health space, researchers and clinicians are faced with novel opportunities and challenges regarding study design, diagnoses, treatments, and follow-up care. This course includes a lecture outlining these new developments, as well as a workshop which introduces users to Synapse, an open-source platform for collaborative data analysis.
Neurohackademy is a two-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute. Participants learn about technologies used to analyze human neuroscience data, and to make analyses and results shareable and reproducible.
This course includes both lectures and tutorials around the management and analysis of genomic data in clinical research and care. Participants are led through the basics of genome-wide association studies (GWAS), genotypes, and polygenic risk scores, as well as novel concepts and tools for more sophisticated consideration of population stratification in GWAS.
This course offers lectures on the origin and functional significance of certain electrophysiological signals in the brain, as well as a hands-on tutorial on how to simulate, statistically evaluate, and visualize such signals. Participants will learn the simulation of signals at different spatial scales, including single-cell (neuronal spiking) and global (EEG), and how these may serve as biomarkers in the evaluation of mental health data.
Most neuroscience journals request authors to make their data publicly available in appropriate repositories. The requirements and policies put forward by journals vary, and the services provided for different types of data also differ considerably across repositories.
This workshop provides basic knowledge on personalized brain network modeling using the open-source simulation platform The Virtual Brain (TVB). Participants will gain theoretical knowledge and apply this knowledge to construct brain models, process multimodal neuroimaging data for reconstructing individual brains, run simulations, and use supporting neuroinformatics tools such as collaboratories, pipelines, workflows, and data repositories.
There is a broad consensus among researchers, publishers, and funding bodies that open sharing of data is needed to address major reproducibility and transparency challenges that currently exist in all scientific disciplines. In addition to potentially increasing the utilization of shared data through re-analysis and integration with other data, data sharing is beneficial for individual researchers through data citation and increased exposure of research.
EEGLAB is an interactive MATLAB toolbox for processing continuous and event-related EEG, MEG, and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.
This course consists of one lesson and one tutorial, focusing on the neural connectivity measures derived from neuroimaging, specifically from methods like functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI). Additional tools such as tractography and parcellation are discussed in the context of brain connectivity and mental health. The tutorial leads participants through the computation of brain connectomes from fMRI data.
Sessions from the INCF Neuroinformatics Assembly 2022 day 2.
The field of neuroscience is one of the most interdisciplinary scientific fields. It is constantly expanded and developed further and unites researchers from a vast variety of backgrounds such as chemistry, biology, physics, medicine, or psychology. By examining the principles that influence the development and function of the human nervous system, it advances the understanding of the fundamental mechanisms of human behaviour, emotions, and thoughts, and what happens if they fail.