This lesson gives an in-depth description of scientific workflows, from study inception and planning to dissemination of results.
This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.
This lesson gives an introductory presentation on how data science can help with scientific reproducibility.
This lecture discusses how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.
This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.
This lesson introduces concepts and practices surrounding reference atlases for the mouse and rat brains. Additionally, this lesson provides discussion around examples of data systems employed to organize neuroscience data collections in the context of reference atlases as well as analytical workflows applied to the data.
This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs.
This short video shows how a brainlife.io publication can be opened from the Data Deposition page of the journal Nature Scientific Data.
This short video shows how data in a brainlife.io publication can be opened from a DOI inside a published article. The video provides an example of how the DOI deposited on the journal can be opened with a web browser to redirect to the associated data publication on brainlife.io.