This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles.
This lesson provides an overview of the current status in the field of neuroscientific ontologies, presenting examples of data organization and standards, particularly from neuroimaging and electrophysiology.
This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs.
This lecture covers structured data, databases, federating neuroscience-relevant databases, and ontologies.
This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.
This lecture focuses on ontologies for clinical neurosciences.
This lecture covers the application of diffusion MRI for clinical and preclinical studies.
This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.
This lecture covers the emergence of cognitive science after the Second World War as an interdisciplinary field for studying the mind, with influences from anthropology, cybernetics, and artificial intelligence.
This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.
This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain.
This lecture covers the three big questions: What is the universe?, what is life?, and what is consciousness?