Skip to main content

This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles. 

Difficulty level: Beginner
Duration: 25:44
Speaker: : Fahim Imam

This lesson provides an overview of the current status in the field of neuroscientific ontologies, presenting examples of data organization and standards, particularly from neuroimaging and electrophysiology. 

Difficulty level: Intermediate
Duration: 33:41

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe
Course:

This lecture covers structured data, databases, federating neuroscience-relevant databases, and ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate
Duration: 21:54

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.

 

This lesson corresponds to slides 158-187 of the PDF below. 

Difficulty level: Advanced
Duration: 1:22:10

In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks. 

Difficulty level: Beginner
Duration: 58:05

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :
Course:

This lesson consists of a talk about the history and future of academic publishing and the need for transparency, as well as a live demo of an alpha version of NeuroLibre, a preprint server that goes beyond the PDF to complement research articles. This video was part of a virutal QBIN SciComm seminar.

Difficulty level: Beginner
Duration: 00:53:35