This lecture covers the three big questions: What is the universe?, what is life?, and what is consciousness?
This lecture outlines various approaches to studying Mind, Brain, and Behavior.
This lecture covers the history of behaviorism and the ultimate challenge to behaviorism.
This lecture covers various learning theories.
An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.
This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.
This lesson covers the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson provides an introduction to the myriad forms of cellular mechanisms whicn underpin healthy brain function and communication.
In this lesson you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson provides an introduction to the course Cellular Mechanisms of Brain Function.
This lesson covers membrane potential of neurons, and how parameters around this potential have direct consequences on cellular communication at both the individual and population level.
This lesson covers the spatiotemporal dynamics of the membrane potential.
In this lesson you will learn about neurons' ability to generate signals called action potentials, and biophysics of voltage-gated ion channels.
This lesson discusses voltage-gating kinetics of sodium and potassium channels.
In this lesson, you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.
This lesson delves into the specifics of how action potentials propagate through individual neurons.
In this lesson, you will learn about neurotransmitter release in the presynaptic specialization.
This lesson covers synaptic modulation through diffusing neurotransmitters.
This lecture gives an overview of glutamatergic transmission.
This lesson discusses glutamate release after an action potential, and the resulting post-synaptic potentials.