Skip to main content

This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles. 

Difficulty level: Beginner
Duration: 25:44
Speaker: : Fahim Imam

This lesson provides an overview of the current status in the field of neuroscientific ontologies, presenting examples of data organization and standards, particularly from neuroimaging and electrophysiology. 

Difficulty level: Intermediate
Duration: 33:41

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe
Course:

This lecture covers structured data, databases, federating neuroscience-relevant databases, and ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate
Duration: 21:54
Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

 

Difficulty level: Intermediate
Duration:
Speaker: :

This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.

Difficulty level: Intermediate
Duration: 24:52
Speaker: : Katrin Amunts

This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.

Difficulty level: Intermediate
Duration: 21:57
Speaker: : Paul Boon

This talk enumerates the challenges regarding data accessibility and reusability inherent in the current scientific publication system, and discusses novel approaches to these challenges, such as the EBRAINS Live Papers platform. 

Difficulty level: Beginner
Duration: 18:08
Speaker: : Andrew Davison

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

This lesson covers membrane potential of neurons, and how parameters around this potential have direct consequences on cellular communication at both the individual and population level. 

Difficulty level: Beginner
Duration: 28:08
Speaker: : Carl Petersen

In this lesson you will learn about neurons' ability to generate signals called action potentials, and biophysics of voltage-gated ion channels.

Difficulty level: Beginner
Duration: 27:47
Speaker: : Carl Petersen

This lesson discusses voltage-gating kinetics of sodium and potassium channels.

Difficulty level: Beginner
Duration: 19:20
Speaker: : Carl Petersen

In this lesson, you will learn about the ionic basis of the action potential, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

This lesson delves into the specifics of how action potentials propagate through individual neurons.

Difficulty level: Beginner
Duration: 23:16
Speaker: : Carl Petersen

This lesson discusses long-range inhibitory connections in the brain, with examples from three different systems.

Difficulty level: Beginner
Duration: 19:05
Speaker: : Carl Petersen
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.

Difficulty level: Beginner
Duration: 37:47

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08