Skip to main content

This lesson gives an introduction to the Mathematics chapter of Datalabcc's Foundations in Data Science series.

Difficulty level: Beginner
Duration: 2:53
Speaker: : Barton Poulson

This lesson serves a primer on elementary algebra.

Difficulty level: Beginner
Duration: 3:03
Speaker: : Barton Poulson

This lesson provides a primer on linear algebra, aiming to demonstrate how such operations are fundamental to many data science. 

Difficulty level: Beginner
Duration: 5:38
Speaker: : Barton Poulson

In this lesson, users will learn about linear equation systems, as well as follow along some practical use cases.

Difficulty level: Beginner
Duration: 5:24
Speaker: : Barton Poulson

This talk gives a primer on calculus, emphasizing its role in data science.

Difficulty level: Beginner
Duration: 4:17
Speaker: : Barton Poulson

This lesson clarifies how calculus relates to optimization in a data science context. 

Difficulty level: Beginner
Duration: 8:43
Speaker: : Barton Poulson

This lesson covers Big O notation, a mathematical notation that describes the limiting behavior of a function as it tends towards a certain value or infinity, proving useful for data scientists who want to evaluate their algorithms' efficiency.

Difficulty level: Beginner
Duration: 5:19
Speaker: : Barton Poulson

This lesson serves as a primer on the fundamental concepts underlying probability. 

Difficulty level: Beginner
Duration: 7:33
Speaker: : Barton Poulson

Serving as good refresher, this lesson explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.

This compilation is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 1:00:07
Speaker: : Shawn Grooms

This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.

This lesson was created by RootMath.

Difficulty level: Beginner
Duration: 1:21:30
Speaker: :

This is the third and final lecture of this course on neuroinformatics infrastructure for handling sensitive data. 

Difficulty level: Beginner
Duration: 1:11:22
Speaker: : Michael Schirner

In this lecture, you will learn about virtual research environments (VREs) and their technical limitations, (i.e., a computing platform and the software stack behind it) and the security measures which should be considered during implementation. 

Difficulty level: Beginner
Duration: 1:06:50
Speaker: : Marc Sacks

This lecture discusses the challenges of protecting hospital data.

Difficulty level: Intermediate
Duration: 12:48

This lecture discusses differential privacy and synthetic data in the context of medical data sharing in clinical neurosciences.

Difficulty level: Intermediate
Duration: 20:26

This talk presents state-of-the-art methods for ensuring data privacy with a particular focus on medical data sharing across multiple organizations.

Difficulty level: Intermediate
Duration: 22:49

In this talk the speakers will give a brief introduction of the Fenix Infrastructure and Service Offering, before focusing on Data Safety. The speaker will take the participants through the ETHZ-CSCS offering for EBRAINS and all the HBP Communities highlighting the Infrastructure role in a service implementation in respect of Security. Particular attention will be on showing what tools ETHZ-CSCS provides to a Portal/Service provider such as EBRAINS, MIP/HIP, TVB, NRP amongst others. Finally there will be given a quick glimpse into the future and the role that “multi-tenancy” will play.

Difficulty level: Intermediate
Duration: 20:05

This lecture gives an introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis, and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron

This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below. 

Difficulty level: Beginner
Duration: 52:26

This is an introductory lecture on whole-brain modelling, delving into the various spatial scales of neuroscience, neural population models, and whole-brain modelling. Additionally, the clinical applications of building and testing such models are characterized. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : John Griffiths