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CAMH Land Acknowledgement

CAMH is situated on lands that have been occupied by First Nations for millennia; lands rich in
civilizations with knowledge of medicine, architecture, technology, and extensive trade routes
throughout the Americas. In 1860, the site of CAMH appeared in the Colonial Records Office of
British Crown as the council grounds of the Mississaugas of the New Credit, as they were known at
the time.

Today, Toronto is covered by the Toronto Purchase, treaty No. 13 of 1805 with the Mississaugas of the
Credit.

Toronto is now home to a vast diversity of First Nations, Inuit, and Métis who enrich this city.

CAMH is committed to reconciliation. We will honour the land through programs and places that
reflect and respect its heritage. We will embrace the healing traditions of the Ancestors, and weave
them into our caring practices. We will create new relationships and partnerships with First Nations,
Inuit, and Métis and share the land and protect it for future generations.
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Today’s Agenda

Modelling Cognition using Bayesian Inference

(o1 Modelling Abnormal Beliefs
R ERV el Daniel Hauke

100 DI - Integration of Neuroimaging: Dynamic Causal Modelling for fMRI
Day 6: 09D and EEG Data
Bayesian 2:30 pm
Models of
Learning and . . | | |
Integration of Dynamic Causal Modelling for fMRI: Extensions and Simulations
Neuroimaging
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Visit GitHub Page: Day 6
Day 6: Bayesian Models of Learning and Integration of Neuroimaging Data
(July 12, 2021)

Instructors: Dr. Andreea Diaconescu
TA's: Colleen Charlton, Daniel Hauke, Peter Bedford, Povilas Karvelis
Compute Environment: MATLAB.

» All students in the interactive stream should have been emailed a link to a temporary MATLAB license that can
be used for this course. Contact KCNI.School@camh.ca with any questions.

« Additional setup instructions are available in the day6 folder

Time (EST) Session
9:00-10:30 Lecture 1: Modelling Cognition using Bayesian Inference Watch on Crowdcast
10:45-12:15 Tutorial 1: Modelling Abnormal Beliefs (Delusions) Watch on Crowdcast

12:15pm-

Lunch Break Join us in gather.town
1:00pm

Lecture 2: Integration of Neuroimaging and Electrophysiological
1:00-2:30pm Data 9 ging ki 9 Watch on Crowdcast

2:45-415pm Tutorial 2: Modelling Neuroimaging Data Watch on Crowdcast

Join us in

4:30-5:00pm Daily Social Chat? /| Q & A
gather.town




Visit GitHub Page: Day 6

MATLAB code accompanying Day 6 of the KCNI school

This code runs on MATLAB R2020a, the license provided with this course. Please, contact the teacher or the TAs if you do not have access

to this license.

Getting Started

1. Please, clone this repository recursively. Otherwise, you will not have all the necessary toolboxes to run the code. You can do so using
the following command:

git clone --recursive https://github.com/krembilneuroinformatics/kcni-school-lessons.git

2. Open Matlab and navigate to the kcni-school-lessons/day6 folder.

3. Set your environment by running ‘kecni_setup_paths'

Tutorial 1: Modeling Abnormal Beliefs

1. Set your environment using 'kcni_setup_paths"
2. Part 1: First steps with the HGF: Run 'HGF_tutorial_generate_task' section by section (you can do so by clicking in the corresponding
section of the script and clicking the 'Run and Advance' Button at the top of the Matlab window next to the green triangle labelled

'Run’).
3. Part 2: Simulating prototypical patients: Run 'HGF_tutorial_generate_learners' section by section

Tutorial 2: Dynamic Causal Modeling for fMRI

1. Set your environment using  'kcni_setup_paths'
2. The master script is 'bpcMcomparebemo’ . We will run it section by section to understand the different steps involved in the analysis.




Who are your instructors?

Andreea O. Diaconescu
KCNI, CAMH

Computational Psychiatry
GitHub: AndreeaDiaconescu;
Twitter: @cognemo_andreea

Daniel Hauke

University of Basel, KCNI, CAMH
Computational Psychiatry
GitHub: Murdugan
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Who are your instructors? i

Colleen Charlton
KCNI, CAMH

Neuroscience, cognitive science
GitHub: colleenci

Peter Bedford

KCNI, CAMH

Neuroscience, cognitive science
GitHub: peterjbedford

Povilas Karvelis
KCNI, CAMH

Computational psychiatry
GitHub: frank-pk, Twitter: @KarvelisPovilas
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Today’s Agenda

Modelling Cognition using Bayesian Inference

Day 6:
Bayesian
Models of

Learning and
Integration of
Neuroimaging
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Cognition as Bayesian Inference

Predictions
Inferred True
Hidden States Hidden States
7

INFERENCE
GENERATIVE MODEL

Sensory Data

“Surprise Signals/Prediction Errors”

camh [0
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DefinitiOnS mean p

precision ©t

» Beliefs are represented as probability distributions A ng:;iz )

« For example: Gaussian (Normal) distributions

— The probability of x is normally distributed with mean u and variance ¢

p(x) = N(x;u,0%)

— Same thing, just expressed as precisions:

p(x) = N(x; u,m)

U = mean

1 .
m = — = precision

Stephan, 2020 camh



States, parameters, inputs

« States: quantities that evolve in time

— states xi(k) at the i level and timepoint k

« Parameters: the structural determinants of the states
— parameters 9 (subject-specific)

« Inputs: Perturbations at each timepoint

— inputs or perturbations u(® at timepoint k

«* variable evolving over  state equations (difference
time, for N trials equation):
_x (k)_
1
x(_| x®) = fctD, 9., uk-—D)
.

Stephan, 2020 camh



State-space representations: Markov Process

s
U

Y ENVIRONMENT
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measurement
(response) equation:

y® =g(x®,6,) +e® camh it

Stephan, 2020



INFERENCE

State-space representations: Markov Process

s
U

Y ENVIRONMENT
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measurement
(response) equation:

y® = g(x(t), Hg) + ) camh s

Stephan, 2020

GENERATIVE MODEL



Bayesian Inference The Bayesian Brain

Predictions

Reverend Thomas Bayes
1702-1761

« The brain is an inference machine
» Conceptualise beliefs as probability

distributions
7o\ « Updates via Bayes’ rule:
Prediction Pnf)r Sensory Data
| * Errors Belief
p(O|m)p(y|®, m)
p(®ly,m) = . m)
-7 Predictions p y g

Evidence

Krembil Centre for
Cal I I Neuroinformatics



Bayesian Inference The Bayesian Brain

Posterior

Likeliliood Reverend Thomas Bayes
1702-1761
.5 b ., Prior x Likelihood
Posterior
p(0|m)p(y|6, m)
O: parameters p(Bly,m) =
y: data p(y,m)

Model evidence

Krembil Centre fo
Camh [iheum:‘, r“f: :w{}u‘l CS |



Bayesian Inference The Bayesian Brain

Posterior
Prior Likelihood
Reverend Thomas Bayes
1702-1761
, 2 : ; 5 : : Prior X Likelihood = Generative Model
Posterior
p(©|m)p(y|6, m)
®: parameters p(Oly,m) =
y: data J p(@lm)p(y16,m)do

Model evidence
camh | (hcs



Bayes Rule: Binary Outcome

Coin toss: . p(©lm)p(y|6, m)
p(Oly,m) =
p(y,m)

Prior = Beta(1.0, 1.0)

Likelihood = Binomial(10 , 4 , 9)

Posterior =Beta(d +1.0,10-4+1.0)
8 -
6 —
4 -
2 - : :
0—‘ I 1 1 I 1 I

0 2 4 6 8 1



Bayes Rule: Binary Outcome

p(©|m)p(y|O, m)

p(Oly,m) =
p(y,m)
Prior = Beta(30.0 , 30.0)
104 Likelihood = Binomial(10, 4, 6)
8 -
6 -
4 -
2 -
0 -
0 2 4 6




Bayes Rule: Binary Outcome

p(©|m)p(y|O, m)
p(y,m)

p(Bly,m) =

Posterior = Prior X Likelihood

p(Bly) = P(6) x P(y|0)

= Beta(a, f) X Binomial («, 8, 0)

camh



Bayes Rule: Binary Outcome

p(©|m)p(y|O, m)

p(Bly,m) = S

Prior = Beta(1.0, 1.0)
104 Likelihood = Binomial(10 , 4 , 9)
Posterior =Beta(4+1.0,10-4+1.0)

1

1h



Frequentist versus Bayesian Approaches

p(©|m)p(y|O, m)

p(Bly,m) =
p(y,m)

Prior = Beta(1.0. 1.0)
104 Likelihood = Binomial(10, 4 ,6)

Posterior =Beta(4 +1.0,10-4+1.0)
8 -
6 -
4 -
2 - : :
O- 1 | 1 | 1

0 2 4 6 8 1 1h



noninformative/flat priors

Categories of Priors  * posterior likelihood
Objective priors -
— noninformative/flat priors

Subjective priors
— subjective but not arbitrary

T T T T T T
0 2 - 6 8 1

— hypothesis-driven shrinkage priors  ©

—.can be the result of previous i . _posterior
empirical studies pTIOT

Shrinkage priors likelihood

— emphasize regularization and sparsity |

Empirical priors

— learn parameters of prior distributions
from the data ("empirical Bayes") 0 2 : o P ;




i
Simple Example: Temperature Estimation

INFERENCE DECISION
Y N

h Krembil Centre for
Cal I I Neuroinformatics




Simple Example: Temperature Estimation

What is the temperature outside?

y=60+c¢

Likelihood & Prior:
p(y[0)~N(8,0¢)
p(0)~N (.uprior: O-;grior)

Posterior:

p(@ |Y) NN(.“post: Oﬁost)

camh e



Simple Example: Temperature Estimation

What is the temperature outside?

y=60+c¢

Posterior:

p(HkV) ~ N(.upost: Ugost)

1 1 N 1
2 2 2
O-p ost O¢ O-prior

2 1 1
Hpost = post(?y + ?.up‘rior)
& &

camh e




Simple Example: Temperature Estimation

What is the temperature outside?

y=60+c¢

Posterior:

p(@ |}/)~ N(ﬂpost: Ugost)

Tlpost = Mg T Mprior

Tl ¢ T[prior
Hpost = y + Horior
Tpost Typost

Precision Ratio Weighting

camh ool




Bayes versus Bayes

Bayes’ Rule

Statistical rule describing the relationship

between conditional probability distributions

@)del fitting/Parameter estimation: \

posterior prior likelihood
p(0|m)p(data|®, m)
®|data, =
p(6ldata,m) p(data|m)

model evidence <«

k Model Comparison: /

p(B|A)p(A)

p(A|B) =

p(B)

@)del of a computation performed by thh

brain:

posterior
P(world|sensory input)
prior likelihood

_ P(world)P(sensory data |world)

P(sensory input)
model evidence

k Bayes as a model of behaviour /

camn




Perception as Bayesian Inference

posterior
P(state|sensory input) Predictions
Inferred True
Hidden States ! Hidden States
:
I
Inference N s : Generative Model
|
o 9_‘,:,_.“ . i
(9 Sl of the world |
| IANS o » . :
‘ - prior i
.| P(state of the world) I
Sensory Data
sensation

P(sensory data |state of the world)

P(state of the world) P (sensory data |state of the world) camh

.P(state|sensory input) = P(sensory input)

Krembil Centre for
Neuroinformatics



Optimal Integration: Uncertainty Considered

What is your prediction about the
temperature outside?

pY[O)~N (Usg, Tsa)|
p(H)NN(.up’rior: O-p’rior)
p(@ |}’)~ N(.upost: O-post)

— — +—1
Tlpost = Mg T Mprior O=T
g 7Tp’rior
Hpost = Usa T+ Horior
Myost Myost

P (state of the world)P(sensory data |state of the world)
P(sensory input)

P(state|sensory input) =

Opos camh T




Optimal Bayesian Learning

posterior
P(state|sensory input) Predictions
Inferred True
Hidden States ! Hidden States
I
Inference : Generative Model
|
|
|
Upost | X1
’ |
:
|

C

Sensory Data

U

P(state of the world) P (sensory data |state of the world) cgmh om coe©

Neuroinformatics

.P(state|sensory input) = P(sensory input)



Short Quiz

Posterior
Prior Likelihood
Synonyms/ Synonyms/ Synonyms/
Keywords: Keywords: Keywords:

camh



Short Quiz

Posterior
Prior Likelihood
Synonyms/ Synonyms/ Synonyms/
Keywords: Keywords: Keywords:
expectation belief update data
knowledge training sensory input
bias learning experience

camh



Modelling Abnormal Beliefs

Wrong Priors

— Uncertainty too low = beliefs too rigid (underfitting)

— Uncertainty too high - high sensitivity to noise (overfitting)

— Displaced center of mass = biased interpretations

— Overestimated volatility = prior knowledge is partly neglected

— Underestimated volatility - failure to track changes in the world

Likelihood Function
— Precision too high/low - evidence is weighted too much/little

camh



Modelling Abnormal Beliets

A

Overconfident, w/ \
0-7 N(0,5=0.5) | \q
|

0.6 ”\H
|
|
£ o5 \
;r;:) 0 \ Biased,
LDU % / N(2.5,5=1)
0 o3
Optimal, Underconfident,
0.2 N(0,s=1) /3 N(0,s=2)
/o \
0.1 \
. . - T
-5 ) 5
Hypothesis Space

camh



How are these beliefs formed?
p(ulx)NN(:uulx»T[e )

p(x)NN(Mx:T[x )

sensory input  prediction expectation
likelihood posterior prior
p(ulx)p(x)
xlu) = ~N y T,

camh ool



T
Updates to the Sufficient Statistics

T[xlu — T[X + Tl:g Prediction Error

Ux|lu = Hx @ U — Uy)
Belief Update ~

. . how much we're learning here
Weight (Learning Rate) = g

N
— »

Mathys, 2019 ‘lelu Uy u

how much we already know

>

camh ooy



T
What about dynamics?

We relax the assumption that
the underlying hidden state x is
stationary

« we replace it with a
Gaussian random walk

this gives us the Kalman
filter:

Temperature

camh e



T
What about dynamics?

\‘.‘\r‘.-

\ ' )
. - R\
,;«*{Q"r"o.y;'#. :
N 4
‘}' :\’; -l.‘f.”.; /
1";

Kalman filter:
p(u(k) ‘x(k))NN(u(k) ‘x(k) 8)

J p(x|x0D, 9)~
N (x®]x®-D, )

Y = seasons

Temperature

camh [0



T
What about dynamics?

Prior: 3 B k—1 1

p(x* DY)~V (e 7, ——)

Ty

Posterior: (k) _ 1 1 A(k-1) A

Ty = s g + e Tty T Ty Prediction Error

X /
k k—1
e = pd Y +

Belief Update ~

. . how much we're learning here
Weight (Learning Rate) = g

how much we already know



i
Kalman Filter . =.+ .

Predictions

(k—1) Belief (k)

Precision 7T X

Sensory Prediction
Precision Errors

2 k_l rembil Centre for
ft,, w® — =y camh (o




T
What about dynamics?

— ..,‘ .— —
7 Climate Temperature

; \ > Krembil Centre fc
AN Change camh (o
o
[ ]
L ]




The hierarchical Gaussian filter (HGF): a
computationally tractable model for individual
learning under uncertainty (Mathys et al., 2011; 2014)

Level 3: Phasic volatility
k k-1
p (xg )) ~]\f(x§ ),19)

Level 2: Tendency towards category 1

(k—1)

p (xgk)) ~]\f(x§k_1), o (X3 +w))

Mathys et al., Front Hum Neurosci, 2011

camh

Krembil Centre for
Neuroinformatics



The hierarchical Gaussian filter (HGF): a ‘ ‘ ‘ ‘ ‘
computationally tractable model for individual
learning under uncertainty

State of the
world Model
P(x5™) ~ N(x5*1),8)
. Gaussian
Log V;) latiity random walk with p(x,™)
3 constant step
of tendency size §
X,k
Pxs) ~ N(X,*1), exp(kx;+w))
Tendency Gaussian
X, random walk with plx;,")
towards step size
category “1” exp(kxg+w) .
x, (k1)

: P(x;=1) = 8(xy)
Stimulus p(x,=0) = 1-5(x,)
category Sigmoid trans- )

X, formation of x, pix,=1)
(uon or u1n) ' Xé

0

Level 3: Phasic volatility

Mathys et al., Front Hum Neurosci, 2011
Krembil Centre for
Cam Neuroinformatics



Hierarchical Gaussian Filtering

p(x”

)

~N (2, £(x2)
* With only 1level, SRLD)

- " theHGFisa
" Kalman filter.

Mathys et al., Front. Hum. Neurosci., 2011

x,(lk) ~N (x,gk_l), 19)

-1

k -
2O~ (2, fiGtian)

k :
1O~ (0, f,x5))

Krembil Centre for
Neuroinformatics

camh



Hierarchical Gaussian Filtering

volatility

association

-« sensory stimuli

oA || g e g mpm— e T o g Iy
—
P o
] ] e e T e T —
RN ¢ 0 50 100 150 200 250 300
» Mathys et al., Front Hum Neurosci, 2011 camh Silsente o

Mathys et al., Front Hum Neurosct, 2014



ﬁ Agent ; World

Sensory input

Perceptual
model with
parameters y

True
hidden states

A
g ’ A/{ /

Response
model with
parameters ¢

Inferred
hidden states

Response

Krembil Centre for
~
I Jal I lh Neuroinformatics



Perceptual
model with | X
parameters y

Inferred
hidden states

Response

Agent ; World

)
model with (
parameters { \-/

u

|

]

'». Sensory input

| Generative Model

|

|

|

|

| True

| hidden states

|

]

|

!

I inter-trial interval
= (max. 4s) (5..7)

(85s)

B

0Bf———————————
i i i q

Response .

I (card1is I

| I

U High Vglatility!

correct) I | | 0
02

|
\ ! |

0




Perceptual
model with | X
parameters y

Inferred
hidden states

Response

Agent ; World

Model Inversion

)
model with (
parameters { \-/

u

|

]

'». Sensory input

| Generative Model

|

|

|

|

| True

| hidden states

|

]

|

!

I inter-trial interval
= (max. 4s) (5..7)

(85s)

B

0Bf———————————
i i i q

Response .

i

\ ) 1

(card1is 1 | High V«?Iauhty:

I correct) ' | ! ; !
w2k e 1 1

_____________
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Sensory input

HGF - Generative Model

Perceptual
model with

HGF parameters y

= Inferred True
}ﬂ”?‘ hidden states hidden states
NV
Mt 7\
g QIV/ )

Response

model with

parameters { Response

Krembil Centre for
~
I Jal I lh Neuroinformatics



HGF: Variational Inversion and Update

Equations

HGF: Model of Beliefs

Agent ; World

Level 3: Belief about volatility

K _(k
N (s, 05 e

Level 2: Belief about tendency

k k
Ny 03

Level 1: Prediction of categories

Bern(u;")

HGF: Model of Inputs

Level 3: Phasic Volatility
k k—
p(x37) ~ (7, 0)

Level 2: Tendency towards category 1

(k-1)

p(x57) ~ v (1§, el w0y

Level 1: Observations: category 1

p (g =1) = 1 +1e‘x2

camh o




Variational Inversion and Update Equations

I
', Sensory input

Perceptual X ' 7
model with | g
HGF parameters y HGF - Generative MOdEl
I
I
g
I
Ak
Inferred 1 \ Q ! =) True
hidden states \) T ol hidden states
'- &S
I
I
I
I

Response
model with (

parameters { Response

Inversion of HGF-GM: mean field approximation and fitting quadratic approximations
to the resulting variational energies (Mathys et al., 2011)

This leads to simple one-step update equations (HGF)
camh 5T

Mathys et al., Front. Hum. Neurosci., 2011; 2014



HGF: Update Equations

Predictions

Prediction
Errors

Belief
Precision

« Updates as precision-weighted
prediction errors

Sensory
Precision
(k) Y o(K) pr
Ap; 0;-1
Belief Belief
Update Precision

h Krembil Centre for
Cal I l Neuroinformatics



T
Updates at the First Level

Prior: (k1) (k1) (ke ) A(k)
1 1 1
P(Xz )~N (x5 Uy

(k))

Outcome Precision

1 __

()

_I_’\(k)
/02 !

Environmental uncertalnty

Informational Uncertainty (instead of the constant 9 in
~ (k) the Kalman filter)
k) _ (k-1) [ T4 k (k—1)
u“z _ '“2 + (k) (u( ) — K4 ) -
T camh ooy



Unpacking the Learning Rate

Rescorla-Wagner Learning:

(k)
Belief Update ~ A,Ll L

Learning Rate/Weight
(k)
>
X

u ()
-amh

Krembil Centre for
Neuroinformatics



Unpacking the Learning Rate

Hierarchical Gaussian Filter :

(k)
Belief Update -~ A,Lll X

how much we're learning here

how muc;l we already know

MG N u(®)

h Krembil Centre for
-al I l Neuroinformatics




HGF: Dynamic Learning Rates

0.9 T
prob
— HGF1
L — HGF2| |
0.8 — -RW
N 0.7 _
v
—
-0
fev] 0.6 — —
oy
Y
)
> 0.5
—
ge]
o o4 -
o
o i
)
@ o03f ) .
+ /
:5 ______ : PP | W SR A A W NNy S PR —— -
o
L) 0.1 ‘ _
o | | | | | | | | |
0 20 40 60 8o 100 120 140 160 180

Diaconescu et al., 2014



HGF: Dynamic Learning Rates

0.6

I
—HGF1
— HGF2
— -RW

| |
160 180

Diaconescu et al., 2014



Modelling Abnorma% Beliefs

Fod
Overconfident, w/ \
0-7 N(0,5=0.5) | \q
\
0.6 |
Zos
o
A 0.4
O
0 0.3
Optimal, Underconfident,
0-2 N(0,5=1) | N(0,5=2)
0.1 / \
0 - N
5 0 5
Hypothesis Space camh



Example: Psychosis

\

Overconfident, w/ \
0.7 N(0,5=0.5) | \
0.6 H‘”
Zos
=
5 0.4
(O
Q- 0.3
o> Optimal, ——— Underconfident,
' N(0,s=1) | N(0,5=2)
0.1 / ll“gg“u
O S~ =S N
-5 0] 5

Hypothesis Space camh



Thank You!

Training

Knowledge Questions?

camh
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“My senses are sharpened.” “I had to make sense - any sense - out of all
these uncanny coincidences.

“Sights and sounds possess a

keenness that I have never I did it by radically changing my conception

experienced before.” of reality.”

Kapur, 2003 Chadwick, 2009



“My senses are sharpened.” “I had to make sense - any sense - out of all
these uncanny coincidences.

“Sights and sounds possess a

keenness that I have never I did it by radically changing my conception

experienced before.” of reality.”

“My senses are

” “l had to make sense - an
sharpened. y

sense - out of all these
uncanny coincidences.”



Psychosis

* Modelling early-psychosis

Symptom
Severity

'y

. N
“I had to make sense - any

“My senses are

sharpened.
P : sense - out of all these :
uncanny coincidences.”
' Y | » Phase
At-risk Psychosis Treatment

camh



Hypothesis: Models of Psychosis Across Stages

Predictions
Belief
Precision

Sensory Prediction
PI‘ECiSilOIl Errors

“My senses are
Y
sharpened.”

Phase
>

At-risk Psychosis Treatment
camh ol




Hypothesis: At-Risk Phase

Sensory

Precision
|
|
|

Predictions

Prediction
Errors

“My senses are
Y
sharpened.”

Belief
Precision

Phase
>

At-risk

Psychosis

Treatment
Krembil Centre for
Cam Neuroinformatics



Hypothesis: At-Risk Phase

Predictions
Sensory
Precision
Y (k)
1—1
Belief
Precision
Sensory Prediction
Precision Errors |, '
| “My senses are ! \
: sharpened.” :
I R Phase
At-risk Psychosis Treatment

h Krembil Centre for
Cal I l Neuroinformatics



Hypothesis: Delusional Conviction

Predictions

Belief
Precision

Predictions

Sensory Prediction SenS.OI:Y Prediction
Precision Errors Precision Errors

1 | N

I My senses”a re ‘I had to make sense - any sensey

sharpened.
I - out of all these uncanny I
coincidences.” I R Phase
At-risk Psychosis Treatment

Krembil Centre for
Cal I l Neuroinformatics



Early Psychosis and Persecutory Delusions

Predictions
Belief

K Precision

Sensory: . ..
Precision Prediction
Errors

Predictions

Belief
Precision

Sensor
Precision

Prediction Diaconescu, Hauke & Borgwardt, 2019

Errors

“I had to make sense - any seM

g = I “My senses are
-~ ! ” |
Y I sharpened. 1 out of all these uncanny I
R : | coincidences” -
9]
At-risk Psychosis Treatment Phase
1.4 1.4
z ) 2 aup ost
= VA _,‘/’\)VA Y =
ig 1.2 /f \FN\(\‘ \ \JN\\J/AV\{H\‘N\[ \1 A{\’* ';; 1.2

[

1

o 50 100 150 200

o
o

Adyvice Validity

:w %
%’Q"\"/\% K
t"” w“'\\\’."«“\cﬁ d [
XK 0.4
e
02"

o 50 100 150 200

50 100 150 200

-

o
%

o
o

Advice Validity
(=]
BN

o 5.0 160 150 zc;o
Trials

Opost



Empirical Validation: Healthy Population

2 secC 5 secC 1 SecC
advice ..
/ decision outcome
cue
2 1o Key features of the task:
£
E 08  recommendations of adviser were
u 7| veridical (pre-recorded videos)
e 0.2+ ] eg e °
-E N Y —— « volatility of advice (stable vs.

40 80 120 160 210 volatile)
Trial Number

Diaconescu et al., 2014, PLoS Computational Biology

. camh
Diaconescu et al., 2017, SCAN



Clinical Applications

2 secC 5 secC 1 secC
advice / ..
decision outcome
cue

» 15 unmedicated (< 7 days of antipsychotic medication) first-episode psychosis patients
(FEP)

16 individuals at clinical high-risk for psychosis (CHR)

* 16 healthy controls (HC) that were matched to CHR for age, gender, handedness, and
cannabis consumption

camh



How do we model persecutory beliefs?

Computational Model of Learning

‘@

Volatility
of
Intention

Vola-tili.ty l<_ @ Hypothesis I:

pr(::;‘:;on Enhanced Learning Rate/Aberrant Salience
Adviser \ Kapur etal., 2003
Fidelity / < Roiser et al., 2009

Outcome . q
prediction A Response Model
error
— @
Mathys et al., Front Hum Neurosci, 2014 h
' cam

Diaconescu et al., PLoS Computational Biology 2014



How do we model persecutory beliefs?

Hypothesis II:
Altered Perception of Volatility
Mean Reverting HGF

Cole*, Diaconescu* et al., 2014
: < Reed et al., 2020
Ornstein-Uhlenbeck Process 4 ’
Vola-tllloty ¢
prediction

Computational Model of Learning

Volatility
of
Intention

error
Adviser P
Fidelity N
Outcome ~J
prediction A Response Model
error
— @
Mathys et al., Front Hum Neurosci, 2014
| camh

Diaconescu et al., PLoS Computational Biology 2014



Models of Persecutory Delusions

Hypothesis I: HGF Hypothesis II: Mean-reverting HGF

Volatility
of
Intention :

Volatility
of
Intention

1s , , 14 Altered perception
Volatility «— Phasic learning rate Volatility Fvolatil
PredlCtIO Diaconescu et al. (2014) pl'edlCtlon of volati lty
Reed et al. (2020) Cole et al. (2020)
error . o error Diaconescu et al. (2019)
. . Reed et al. (2020)
Tonic learning rate
. ‘ Diaconescu et al. (2020)
Reed et al. (2020)
Advice N Advice T ¥

predictio ™4 Response Model prediction "4  Response Model

error error

Advice
Accuracy

Response

Mathys et al., Front Hum Neurosci, 2014

Advice
Accuracy

Diaconescu et al., PLoS Computational Biology 2014

Response

camh



Model Attributions

Subjects

HC

Model Attributions

1

2 0.9

3

4 0.8

5 0.7

6

7 0.6

8

9 0.5
10 04
11

12 0.3
13 0.2
14
15 0.1
16 0

o Q> o
e vg:\,Q’
Models
Interpretation

Evidence for altered perception of environmental volatility in FEP.

Subjects

e el el el
OV HEWNRFROOONOULEWNR

CHR

Model Attributions

Models

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Subjects

CLVWOoONOUBWNPR

FEP

Model Attributions

Models

camh

0.9
0.8
0.7
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0.4
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Enhanced Perception of Volatility & Decoupling

3-0_ *% °

2.5_ o

]

___8C

2.0- I
= z
1.51 0.4 O
1.0’ o
- ) - | 03, | | |
Density HC CHR FEP Density HC CHR FEP

“FEP displayed reduced coupling
strength between hierarchical levels

compared to HC”
Krembil Centre fi
camh o

“Intentions were perceived as



Clinical Relevance: Parameters & Symptom Severity

m, K
* correlated positively with PANSS positive * correlated negatively with PANSS negative

symptoms (r = 0.32, p = 0.026, pr= 0.158) symptoms (r = -0.39, p = 0.008, p;r= 0.048)
Example

P3. Hallucinatory behavior

Verbal report or behavior indicating perceptions which are not generated by external stimuli. These
may occur in the auditory visual, olfactory, or somatic realms. Basis for rating: Verbal report and
physical manifestations during the course of interview as well as reports of behavior by primary care
workers or family.

Example

N1. Blunted affect
Diminished emotional responsiveness as characterized by a reduction in facial expression, modulation

of feelings, and communicative gestures. Basis for rating: observation of physical manifestations of
affective tone and emotional responsiveness during the course of interview.

camh e



Results: Early Psychosis and Belief Uncertainty

Sensory
Precision

4 N

Predictions

Prediction
Errors

Hsd

Osd

Opost

Hpost

camh

Krembil Centre for
Neuroinformatics



Applications: Delusional Conviction

2 sec 5 secC 1secC
advice / ..
decision outcome
cue
Low PD group High PD group
M (SD) range M (SD) range
Dispositional

age 27.8 (9.5) 18-67 27.3 (8.36) 18-49
education 9.5 (3.3) 7-20 9.1 (2.24) 6-20
N 41 (15 male) 34 (14 male)
age 29.3 (9.7) 18-54 28.5 (10.92) 18-56
education 9.4 (4.0) 2-20 8.6 (2.91) 6-15

N 39 (16 male) 34 (15 male) h
Katharina,Wellstein Note: N=148, variables do not differ significantly between groups and between conditions cam




What about delusional conviction?

Experimental Frames:

Frame A: Dispositional Focus

Du splolst das ‘Social Learning'~Spiel mit diesem Ratgeber:

2 sec 5 sec 1 sec
‘ advice/cue decision outcome
I~
= 10
o= 0.8
]
> 0 _5 F 4 Du spielst das ‘Social Learning’-Spiel in der Rolle des Spielers:
!
oy O .2 L
i L
< 0.0
40 8o 120 160 210

Trial Number

Vergiss nicht, dass die Ratgeberin keine vollstandigen Informationen
hat, sie kann also manchmal unabsichtlich einen inkorrekten Ratschlag
geben, selbst wenn sie Dir helfen méchte.

Wellstein* sDiaconescu* et al., 2019, Schizophrenia Research.
Diacenescu*, Wellstein* et al., 2020, Journal of Abnormal Psychology, Special Issue: Predictive Coding and Psychopathology.

camh



Models of Persecutory Delusions

Hypothesis I: HGF Hypothesis II: Mean-reverting HGF

Volatility
of
Intention :

Volatility
of
Intention

1s , , 14 Altered perception
Volatility «— Phasic learning rate Volatility Fvolatil
PredlCtIO Diaconescu et al. (2014) pl'edlCtlon of volati lty
Reed et al. (2020) Cole et al. (2020)
error . o error Diaconescu et al. (2019)
. . Reed et al. (2020)
Tonic learning rate
. ‘ Diaconescu et al. (2020)
Reed et al. (2020)
Advice N Advice T ¥

predictio ™4 Response Model prediction "4  Response Model

error error

Advice
Accuracy

Response

Mathys et al., Front Hum Neurosci, 2014

Advice
Accuracy

Diaconescu et al., PLoS Computational Biology 2014

Response

camh



Models of Persecutory Delusions
Hypothesis I: HGF

Volatility
of
Intention /

Volatility «— Phasic learning rate
predlctlo Diaconescu et al. (2014)
error “\‘ Reed et al. (2020)
@ Tonic learning rate
. ‘ Diaconescu et al. (2020)
Reed et al. (2020)
Advice e 9
predictio "4 Response Model
error

Advice

R
Accuracy esponse

Mathys et al., Front Hum Neurosci, 2014
Diaconescu et al., PLoS Computational Biology 2014

camh



Results: Paranoid Ideation and Precision

~

Predictions

Belief

Evolution Rate: w

Precision Or .
'2 [ ..'..O'.. ..o. .:0:.
4 . e _ o
.2 m B R
-8 . .:-.'... . -

-10 - o . A :
* Sensory Prediction
+/—.Precision Errors 14 .
T Frame: Dispositional  Situational Dispositional Situational
Group: Low PD Low PD High PD High PD

Krembil Centre for
Neuroinformatics
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Conclusions low precision high precision

Generative model of beliefs

Level 3: Belief about volatility ‘

N (ugk), ag(k)) delusional mood
/4—\= early psychosis PR —
sticky” priors

Level 2: Belief about fidelity over-sensitivity to on fidelity

N( ué"), o Z(R)) upcoming PEs

Level 1: Prediction of categories

delusional conviction
= paranoia —

Bern(ugk))

camh [0
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Today’s Agenda

100 DI - Integration of Neuroimaging: Dynamic Causal Modelling for fMRI
Day 6: e and EEG Data
Bayesian 2:30 pm
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Three Levels of Inference

— Computational Level: predictions, prediction errors
— Algorithmic Level: reinforcement learning,
hierarchical Bayesian inference, predictive coding

— Implementational Level: Brain activity,
neuromodulation

David Marr, 1982
3 ingredients:

1. Experimental

2, Computational
paradigm:

model of learning:

[

3. Model-based fMRI
analysis:

L

u, S(1,)

Adviser

Player

Yy,
=

Irials

camh



Introduction

structural, functional and effective connectivity

structural connectivity functional connectivity effective connectivity

O. Sporns 2007, Scholarpedia

structural connectivity

= presence of axonal connections

functional connectivity
= statistical dependencies between regional time series

effective connectivity
= causal (directed) influences between neuronal populations

connections are recruited in a context-dependent fashion

cam

Krembil Centre for
Neuroinformatics



Dynamic Causal Modelling (DCM)

ACADEMIC
PRESS

The

Wellcomea

Avallable online at wwwisciencedirect.com

Neurolmage

Meurelmage 19 (2003) 1273-1302 www_elsevier.com locate yolmg

Dynamic causal modelling

K.J Friston * L. Harrison, and W. Penny
Dgparmment gf Imaging Newroscience, Institute of Newrology, Queen Square, London WCIN 1BG, UK

Feceived 18 October 2002; revised 7 March 2003; accepred 2 April 2003

* DCM framework was introduced in 2003 for fMRI by Karl Friston,

Lee Harrison and Will Penny (Neurolmage 19:1273-1302)

* Application: FMRI data

camh



Dynamic Causal Modeling (DCM)

A

Hemodynamic Electromagnetic
forward model: forward model:

neural activity—>BOLD neural aCtiVity—ﬁEg

LFP

\ Neural state equation: /
dx
=F(x,u,@
(x,,6) EEG/MEG

complicated neuronal model
simple forward model

fMRI

simple neuronal model
complicated forward model

Stephan & Friston 2007,
Handbook of Brain

Connectivity

camh



Dynamic Causal Modeling (DCM)

A
Hemodynamic Electromagnetic
forward model: forward model:
neural activity—>BOLD neural activity >EEG

MEG
LFP

Neural state equation: /
dx
=F(x,u,@
(x-,6) EEG/MEG

ac e complicated neuronal model
e Tl i simple forward model
o~ ATP~ - R\
i A[;P'I"PLR \"'C‘T .
nearal “lawy ) betoon /
L VR
Foult)

camh :

(fIVIRI balloon-like model)
metabolic and hemodynamic cascade



Dynamic Causal Modeling (DCM)

A
Hemodynamic Electromagnetic
forward model: forward model:
neural activity—>BOLD neural activity >EEG
MEG
LFP

Neural state equation:

dx _ Ry 0)
B e EEG/MEG

(EEG gain model)

F)

| - | propagation of the electrical potential
+
ey TN N A% through the head tissues
= (e ~ capilary
S ATP - ~CR '\
] C o3t On o
e ACP +> PGR || C ‘ Ox .
g ™\ verous > \.——'-l ——
neural | dHb .V | patoon % y
compartment \_ d

EEG

Foelt)
(VIR balloon-like model)
metabolic and hemodynamic cascade

camh ool



Connections are recruited in a context-dependent fashion

————— I T T Fe==—E====%=-=-= 1 T
0.4l i i i .
1 ! 1 !
0.3 1 1 .
1 ! 1
0.2 : i
0.1 1 i |
1
0I I r : r I il r I : I I ]
0: 10 20 , 30 40 Sq 60 70 1 80 90 100
1 1
I . | !
0.6 p- ! 0 T n
1 ! 1 !
\ 1 | 1
1 1
0.4} | : | -
| 1 | 1
1 ! 1 !
0.2 1 1 -
1 ! 1
| 1 | |\
oW TN~ ] ! .
N r r 1 r [ i r [ ! [ [
o 10 20 : 30 40 50I 60 70 : 80 90 100
: 1 I 1
1 ¥ 1
! T T T T L; T T T T
0.3T | ] 1 7
1 1 | 1
0.2 ! ! i
[ 1
' | ' )
0.1 ! ] d i
1 1
0 ! 1
“““ T-=—---==' I o= pmmmmmm ==t I
0 10 20 30 40 50 60 70 80 90 100

Synaptic strengths are context-sensitive:
They depend on spatio-temporal patterns of
network activity.

camh oo



Dynamic Causal Modeling for fMRI: Example

Task-driven
lateralisation

+ HAUS
+ DORF
+ MOND

Does the word
contain the letter A

+ BAUM

or not?
| . :
. 1y ) S
. Isthered letter left
or right from the

;}Iﬁ‘dliné of.the 4+ HAUS

~word?. -

Stephan et al. 2003, Science

letter decisions > spatial decisions

Krembil Centre for
Neuroinformatics

4

spatial decisions > letter decisions



Bilateral ACC activation in both tasks - T
but asymmetric connectivity

group analysis
random effects (n=15)
Pp<0.05, corrected (SVC)

*

left ACC (-6, 16, 42) letter vs spatial
decisions

spatial vs letter _ %
" right ACC (8, 16, 48) decisions Right ACC —right IPS:  gamh (o0
Stephan et al. 2003, Science increase during spatial decisions.




Dynamic Causal Modeling for fMRI: Example

. 4
letter
3r * decisions CQ/_‘J °r =g spatial
A A .« o
O 2 A A =l * A A a decisions
i S Ry . = :
: { (gv] 1
= , =
v spatial =
= decisions 7 .%00’ + decisions
o
o S
gb o A %: ® e ‘T&
=2 A 04 % e i cl2l
v o® i ‘ 20 A
Al L 2 Al A
@ A A
4 0 i 2 3 = 1' 0 | 2 3 4
Signal in left ACC Signal in right ACC

Left ACC signal plotted against left [FG Right ACC signal plotted against right IPS

. camh o
Stephan et al. 2003, Science



The problem of hemodynamic convolution

\—
4

Krembil Centre for
Camh ‘ Neuroirln‘ormatics



Neuronal vs. BOLD level

N

ognitive network model:
irectly at the neural level

W

« The modelled neuronal dynamics () are
transformed into area-specific BOLD signals

(y) by a hemodynamic model (3).

The aim of DCM is to estimate parameters at
the neuronal level such that the modelled y

and measured BOLD signals are maximally*

similar.

camh o




Dynamic Causal Modeling for fMRI: Example

Example:

a linear system
of dynamics in
visual cortex

ANEEAN

IFG IFG
X3\ left right *4
Xl left ght X2
RVF LVF
U2 ul

LG = lingual gyrus
IFG = inferior frontal gyrus

Visual input in the
_left (LVF)
- right (RVF)
visual field.

Xy = apXy +a,pX, +a;iX; +CpHlU,
Xy =0y Xy T Ay Xy T Ay X, + Gyl
X3 = Ay Xy + Ay + Ay X,

Xy =Xy +ApX5 T AyuX,

camh




N~ A

IFG IFG
X3 | left right X4 LG =i 1
. = lingual gyrus
Example: FG = fusiform gyrus
a linear system
. . Visual input in the
of dynamics in LG LG left (LVF)
. X1 Jeft right X2 ¢ h
visual cortex SV AV A - right (RVF)
visual field.
RIY gtate effective system input external
czhanges connectivity ! state parameters  inputs
| | | | |
IR v IR v
.y C X ay  a, a0 ] |x 0 ¢
X=AXx+(Cu
Xo | |y Ay 0 ay||x, N G U
X3 ay 0 ay ay || X 0 0 |lu
0 = {A, C} X, | |0 ay, ay ayu||x| [0 0]




Extension: u

og e X X
bilinear o e ght !
dynamic = (A+Y u BD)x +Cu
system /=
X, left ght Xa
4 b
RVF  CONTEXT LVF
u, U, u,
X (lay @, a3 O] 0 0 0 x| [0 ¢, O]
U
Xo | || %21 Y 0 ay 0 0 0 Xy ¢, 0 0 1
= J ‘|‘M3 3) > + U,
X, a,, 0 a,; ay 0 0 O0\b X, 0 0 O
u
XL 0 a, a, ay 0 0 0 0| |[x] | 0 0 0 ’




hemodynamic
model
neuronal X
A
states :
modulatory integration
input u,(t)
driving >t
input u,(t)
endogenous
connectivity
>t modulation of
connectivity
" : direct inputs —
phan & Friston (2007),

embil Centre for

Handbook of Brain Connectivity == ®Lroinformatics



DCM parameters = rate constants

Integration of a first-order linear differential equation gives an
exponential function:

% =ax —> x(t)=x,exp(at)

The coupling parameter a determines
the half life of x(¢t)

x(7)=0.5x,

= x, exp(ar)
—> a=In2/7

If A>B is 0.10 s this means that, per unit time, the increase in
activity in B corresponds to 10% of the activity in A

Krembil Centre fo
Camh Nuumi‘, r“f: :w{}u‘l CS |



Example: context-dependent

context
uZ

decay

x=Ax+uB%x+Cu,

S - X, o an 0 ¢ O y
.~ Penny, Stephan, Mechelli, Friston X _ A o X+ U2 0 2 X+ 0 0 u,
Neurolmage (2004) 2 b 2

h& H\(r
m Jroinfo




DCM for fMRI Extensions

Single State-DCM

/’:0'1-\\\

4 \
’
\
1
\
i 1
1
: <l
\\ ;
i ’
P &
\\ ’
-~

d;(?f)t) = <o Xg (t) + ¢ -ut)

Friston et al. 2003

Thanks to Uludag, 2021 camh | [&icee o



How about the hemodynamic forward model? ‘ ‘ ‘ ‘ ‘

From neuronal to hemodynamic response

Havlicek et al. 2015

1. Neural model

Arriving
| Spikes

v Krembil Centre for
Uludag, 2021 camh (oo



How about the hemodynamic forward model? ‘ ‘ ‘ ‘ ‘

From neuronal to hemodynamic response

1. Neural model 2. Neurovascular Coupling Havlicek et al. 2015

Arriving
Spikes



How about the hemodynamic forward model? ‘ ‘ ‘ ‘ ‘

From neuronal to hemodynamic response

1. Neural model 2. Neurovascular Coupling Havlicek et al. 2015
3. Hemodynamic Model

Capillary/ BOLD response

Arriving
Spikes



N

Neuronal
Model

Neurovascular
Coupling

Hemodynamic
Model

Dynamic Causal Modeling for fMRI

Friston et al. 2003

Uludag, 2021

Zappe et al. 2008
Attwell et al. 2010

camh oo



N

Neuronal
Model

Neurovascular
Coupling

Hemodynamic
Model

Dynamic Causal Modeling for fMRI

Friston et al. 2003 Havlice

Uludag, 2021

k et al. 2015

Zappe et al. 2008
Attwell et al. 2010

camh ool



Dynamic Causal Modeling for fMRI

Main Differences: Neurovascular Coupling

Friston et al. 2003
S-DCM

Neuronal
Model

Neurovascular
Coupling

Hemodynamic
Model

BOLD
signal

Havlicek et al. 2015
P-DCM

BOLD
signal

Neurovascu-
ds(t)
lar coupling dt xg(t) —ks(t) —y(F(®) - 1)
& Blood flow df(t)
dt - S(t)

ds(t)

—r = 2O —ps()

df (t)
dt

= s(t) —8(f(t) — 1).

Feedback based: damped oscillator

strictly feed-forward



Dynamic Causal Modeling for fMRI

A Connectivity structure

Results: Better Data-Fitting!

Standard-DCM:

(a.u.)

0 10 20 30 40
Time (sec)

left M1

(a.u.)

0 10 20 30 40
Time (sec)

Left VF

(a.u.)

(a.u.)

Havlicek et al. 2015

P-DCM:

left V1

0 10 20 30 40
Time (sec)

left M1

0 10 20 30 40
Time (sec)

B Experimental design
Visual stimuli:

»
Hand response: @’f w
Ipsilateral responses
Block paradigm:
R Rest L
—>
14 sec 26 sec

Driving inputs u(t):

|
i
. [

Modulatory inputs up(t):

1tre for
® atics




stimulus function u

Overview: |
arameter estimation . _ j neural state
P x—(A+ZujB )x +Cu equation
Combining the neural and
hemodynamic states gives the
Complete forward model. _ activity - dependent vasodilatory signal |
: 1 S=zewep(f-n ]
An observation model ; s s
includes measurement )
error e and confounds X (e.g. flow -induction (CBF) parameters
drift). hidden states f=s 0" =i,y 7.0, p}
ZI{X,S,f,V,q} f n 1 m
Bayesian inversion: parameter : O =45..57,6
0 - : state equation 0=10",0"
estimation by means of = F(x.u.0) L :
variational EM under Laplace . 2
. . changes in volume changes in dHb
approximation Chea ANy L
w=f-v g =fE(fp)p—v" ey
Result: v q
Gaussian a posteriori ]
parameter jistributions,
characterised by n |
mean 1g|, and 0y .
covariance Cy,. - >y =h(u,0)+ X +e
modelled Iobservatlon model I
BOLD response
camh



DCM uses a Bayesian approach

new data

p(y|0) |p6)

AN

p(@|y) < p(y|0)p(0)

posterior o« likelihood

Bayes theorem allows one to formally
incorporate prior knowledge into
computing statistical probabilities.

In DCM:

empirical, principled & shrinkage priors.

0.45

n I : Prior
—— Likelihood H
—— Posterior

0.4-

0.35¢
0.3+
0.25-
0.2r
0.151
0.1+

0.05} / }
0 ,~‘{/ )

-10 0 10 20 30

The “posterior” probability of the
parameters given the data is an optimal
combination of prior knowledge and
new data, weighted by their relative
precision.

camh




Bayesian statistics

Parameters governing

* Hemodynamics in a single region
* Neuronal interactions

Constraints (priors) on
* Hemodynamic parameters

- empirical

* Self connections are negative
-principled

e Other connections

new data

p(y|0)

p(0)

l

p@]y) < p(y|0)p(6)

posterior

oc likelihood

\ 4

0.45

0.4+
0.35+
0.3F
0.25¢
0.2+
0.15+
0.1+

0.05F

m— Prior
— Likelihood H
—— Posterior

-10

10

20

30
camh



Quiz: Can DCM Explain Your Data?

72

e

~J
o
-t

V5 activity
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Quiz: Can DCM Explain Your Data?

photic
motion

attention . -I Phofic | , . @
‘\é N

) photic
motion motion

attention attention
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photic

\rembil Centre for
= Neuroinformatics
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Quiz: Can DCM Explam Your Data?

photic --i =o
motion hotic
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1 |
== | Ny
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DCM Across Data Modalities

Hemodynamic Electromagnetic
observation model: observation model:
temporal convolution spatial convolution

neural states dynamics

x=f(x,u,o)

« complicated neuronal model
» fast time scale

camh

Krembil Centre for
Neuroinformatics



DCM Across Data Modalities T

« DCM: model structure

likelihood

= p(v]0.0.m)

y=g(x,0)+e
)'czf(x,u,é?)

priors on parameters

0= Hp(y|9,q),m)p(6’|m)p(g0|m)d¢9dg0

p(sim)= [ p(10.0m)p(6lm)p (o) dpdo
camh [




Neural ensembles dynamics ]

multi-scale perspective

macro-scale meso-scale micro-scale

. , i external granular
-+ i layer

external pyramidal X
21 layer

‘, L i internal granular
S0 i layer

i internal pyramidal
i layer

mean-field firing rate

5

synaptic dynamics
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s [\ |
: \
5 gos :\ : :
< . .
‘E 0 CSo6r : : .
2 2 : : .
: 5 : : :

; 2o2 : : .

: : ¥ Camh Krembil Centre for
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Neural ensembles dynamics ]

Jfrom micro- to meso-scale

X, (t) : post-synaptic potential of j neuron within its ensemble

i H(xj.(t)—9)%Jﬂ(x(t)—e)p(x(t))dx

Q

S () mean-field firing rate

1
1
1
1
1
1
1
T
I
1
1
i
i
I
I
1
|
i
i
1
1
1
i
i
1
I

ensemble density p( x)
mean firing rate (Hz)

—
o
1
o
o
6]
—
o

. . . . Krembil Centre for
membrane depolarization (mV) mean membrane depolarization (m\QalY Ih Neuroinformatics




Neural ensembles dynamics ]

synaptic kinematics

Presynaptic

; Postsynaptic cell
‘ 7,<\<
A R

Neuro-

A Synaptic vesicles transmitter
i « containing Presynaptic
P \ neurotransmitter ~ membrane <

\ Postsynaptic
C‘.)\ ‘ | membrane
= S Ligand- . .
&)~ 2 gated ost-synaptic potential

Volta &) (8) p ynap p

Ca2* channel N\

| | / ion channel
k ( 3 J /\Postsynaptic
B ! -' s’ membrane
_— 3 ”».

gl ’

Ligand-gated
ion channels

membrane
depolarization (mV)
97}
3

H = H,
- 2 2
i, =k, S() = 2K, 1, —K;,, 1, K
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Neural ensembles dynamics ]

intrinsic connections within the cortical column

..... = g
Golgi Nissl L fy = 7506, S (1) = 2,1 — K, 11,
external granular :
layer TR
Y . inhibitory V., V5
interneurons
external pyramidal A
layer
; =, ‘
v splny o 2 2
N =yKk.S —2K,U, — K
—.— internal granular stellate Ha = 7K ('uo) et et
e layer ¢ 3 cells S
: . intrinsic y
, - | . 2
p internal Pyra“{‘;;lji v connections
pyramidal
' cells :
Ho = Hs — Hg
= Hs
. 2 2
fis = 7,k S(ay) = 2K 45 — K,
s = X,
. 2 2
g = yai; S(Hy) = 20,1 — K7 14y
s | Kfembil Centre for
N
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Neural ensembles dynamics ]

extrinsic connections between brain regions

extrinsic
lateral ' v, S( U, )
£ = connections
fis = K2((r5 + 7, + 7D S(1y) = 2, 1ty — K2 11
D 1
A :
o Y /4 .
inhibitory extrinsic ! : :
interneurons forward E
'y connections =, .
s d < > = (e s+ DS () + ) — 2t — 4 :
stellate Vr (,Llo) i. .
cells :
T 71 7/2 .
v :
pyramidal Ly = Hs = Hg :
cells . -
— /u2 = /u5 E
/‘5:Kez((73+7L)S(;u0)+72S(/11))_2Ke:u5_Kfluz < .E
SV = x, -
=Ky S L)~ 2 gt i extrinsic
He =K 7ao ity e ~HKi by backward 755 (4y)
connections

Krembil Centre for
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Observation mappings

the electromagnetic forward model

y(t):ZL"')wg");ﬂjy("” (1)+&(2) (1)~ N(O,Qy)

i

A7 é

Vi)

h Krembil Centre for
Cal I l Neuroinformatics




Bayesian inference
forward and inverse problems

—
—~
~
~

forward problem
p(y]9.m)

likelihood

posterior distribution

inverse problem

Krembil Centre for
Neuroinformatics

camh



Bayesian inference ]
likelihood and priors

likelihood  p(¥[dm)

prior p(3 m)

posterior 4 (19|;V, m) =

generative model m

i

y 06 L.. Ilke"hood AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
& 'Coregistravled trialsland avere:ge event 'for chann:al LEB-RfT 05 L. prlor .................. e -
500} posterior
il 04 Ly b RN 4
300 +
03 ....................................................... A R T 4
200 +
100 H
0

00

Events of type #1
m— Eyents of type #2
-300 |- | w— Eyents of type #3
m—— Eyents of type #5
T T T

200
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Bayesian inference ]
DCM: key model parameters

e ' st s ' A ' Y ot it ' i 't e m

g nadn'a B R RA
e a

o5\ 05

% R

i
M/ /) r// j

7 7

(6,,,6,,.6,,) state-state coupling

7 s

=
— A input-state coupling

THTRRRERR

o), input-dependent modulatory effect |
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What are the DCM parameters?

DCM parameters = rate constants

Decay function

-0.1 0 0.1 02030.40.5060.7080.9

7=In2/s

0.10

“If ASB is 0.1 s this means |
that per wunit time, the
increase in activity in B
corresponds to 10% of the

._current activity in A )

cam

> x1(t) = x;(0)exp(a t)

Krembil Centre for
Neuroinformatics



Inference about DCM parameters:
group analysis (classical)

* In analogy to other “random effects” analyses, 2"d level/group

analyses can be applied to DCM parameters:

Separate fitting of identical models
for each subject

l

Selection of bilinear parameters of
interest

— |

one-sample t-test: paired t-test:
parameter > 0 ? parameter 1 >

parameter 2 ?

rmANOVA:
e.g. in case of multiple
sessions per subject

camh




DCM roadmap

| definition of model space '

A

inference on model structure or inference on model parameters?

inference on

inference on

individual models or model space partition? parameters of an optimal model or parameters of all models?

A 4

optimal model structure assumed
to be identical across subjects?

comparison of model

FFX or RFX BMS

y

optimal model structure assumed BMA
to be identical across subjects?

families using

RFX BMS

yes no

FFX BMS RFX BMS

FFX analysis of RFX analysis of
parameter estimates parameter estimates
(e.g. BPA) (e.g. t-test, ANOVA)

Krembil Centre for
Cal I I Neuroinformatics



Value of DCM

Conventional analysis:
Which regions are involved in task?

@
@

" Input (stimulus)

DCM analysis:
How do regions communicate?

@
@ @

A Input (stimulus) Camh

Krembil Centre for
Neuroinformatics



Mismatch Negativity (MMN)

‘deviant’ Schizophrenia vs. Controls

uv
' . ’ . ‘ . Healthy comparison subjects
difference
lst an d ar dl 2 Schizophrenia patients
difference ssessesees
1
MV MV g
4 4
= Difference 2 -1
0 Waveform 0
-z 2 \ -2
(Stand - Dev) | MMN
4 } MMN
-4 \ ,
0 -3
msecC msec

camh



Modelling Auditory MMN Eftfect

sequence of auditory stimuli

o,
@@ @10

S §S S S D S

standard condition (S)

t ~ 200 ms

A1 A1
"ISTG trSTG

S-D: reorganisation
of the connectivity structure

R FG

camh o



Example #1: Role of feedback connections

A B C

ﬂ with backward connections and without

e FB @ F @

& b

input input

Forward —_—

BackWard ey Garrido et al., 2007

Krembil Centre for
Cal I l Neuroinformatics




Example
A

with backward connections

FB

1: Role of feedback connections

B

and without

A 30

Q - ©

@

Log Bayes factor (FB - F)

1 1

-300
input 180

Forward
Backward

e o

190

200 210 220 230 240 250 260
Peristimulus time (ms)

Garrido et al., 2007

cam

Krembil Centre for
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Example

1: Role of feedback connections

‘ w0 time (ms) 4 o . time (ms)

grﬁ L\) Garrido et al., 2007
e A """"" camh ool




Example #2: Networks and the MMN

a S2 S4
N Gt DIttty t oty t, DAty ti teng
10y | I T O O T I Y Y S
oy
| =
(4}
g
50
= SOA=0.5s
time (s)
Dit; = deviant
t, =triali, 1<i<11
b c
HEOG input
- a3 o~
R e g S2i S4i S5i @
™ o Al
o 1 as
y @ @ D
B2 i i H i
-3 i - -
00 0 100 200 300 400
ms
— 16 (6th trial) .
~ t1 (oddball trial) input

Garrido et al., 2008

Krembil Centre for
Camh ‘ Neuroi;ﬁormatics



Example #2: Networks and the MMN

Deviants vs. Standards

- Significant coupling decrease (p<0.003 ) in
backward connection linking rIFG to rSTG

- Trend increase (p<0.1) for:
- Intrinsic connection within rAl
- Forward connection linking IA1 to
ISTG

Garrido et al., 2008

Camh N urc rHT(



Modelling Auditory MMN Eftfect

sequence of auditory stimuli

o,
@@ @10

S §S S S D S

standard condition (S)

t ~ 200 ms

A1 A1
"ISTG trSTG

S-D: reorganisation
of the connectivity structure

R FG

camh o



Modelling Auditory MMN Eftfect

sequence of auditory stimuli

Baseline Connectivity: A Matrix Cognitive Effect: B Matrix
IFG IFG
“ L
Y,
STG— STG STG— STG
4o t
| V.
B ~— e .. —
Left Right Left &8 Y Right
[nput Input

camh



Modelling Auditory MMN Eftfect

Baseline Connectivity: A Matrix

IFG

!

STG—— STG

Tt ¢

LA O Right

Input

sequence of auditory stimuli

—FO

O

O—

S 8§ S S D S

riFG

rA1,
@ . *

1ISTG

IA1

*

STG'

left A1 right A1 |left STG |right right
STG IFG
left A1
right A1
left STG |I'C=1
right FC=1
STG
right IFG FC=1

camh




Modelling Auditory MMN Eftfect

Baseline Connectivity: A Matrix

STG—— STG

v

Left _nans

IFG

¥
)

o Right

Input

sequence of auditory stimuli

—FO

O

O—

S 8§ S S D S

riFG

A1 rA1,

[ J . *

1ISTG

*

STG'

left A1 right A1 |left STG |right right
STG IFG

left A1 BC=1
right A1 BC=1
left STG | I'C
right FC BC=1
STG
right IFG FC

camh




Modelling Auditory MMN Eftfect

Baseline Connectivity: A Matrix

IFG

¥

STCE> STC

¢ ¥

Left A1 o Right

Input

sequence of auditory stimuli

—FO

O

O—

S 8§ S S D S

IA1

L]
A .

STG'

riFG

rA1,

L

1ISTG

left A1 right A1 |left STG |right right
STG IFG

left A1 LC BC
right A1 | LC BC
left STG |I'C LC
right FC LC BC
STG
right IFG FC

camh




Modelling Auditory MMN Eftfect

Cognitive Effect: B Matrix

IFG
1!
Y
STG— STG
A A
Y ¥
Lt @ O Right
Input

sequence of auditory stimuli

—FO

O

O—

S 8§ S S D S

IA1

]
*

*
STG'

riFG

rA1,

L

1ISTG

left A1 right A1 |left STG |right right
STG IFG

left A1 LC BC
right A1 | LC BC
left STG | FC LC
right FC LC BC
STG
right IFG FC

camh




MA I LAB options.dcm.sources.name ...

= {"left Al1l', 'right Al', 'left STG’,
'right STG', 'right IFG'};
options.dcm.sources.mni=[[-42; -22; 7] [46; -14; 8] [-61; -32; 8]
[59; -25; 8] [46; 20; 8]];

Baseline Connectivity: A Matrix Cognitive Effect: B Matrix
% Forward connections % Lateral connections o PE modulation
dcmModel.A{1,1} = ... dcmModel.A{1,3} = ... dcmModel.B{1,1} = ...
[0 0000 [01 000
00000 10000 [00100
10000 000180 00010
21000 20100 10000
00010]; 0000 0]; 01001
0 0010];
% Backward connections
dcmModel.A{1,2} = ... .
00100 Model Input: C Matrix
g g g ; g % Input
00001 dcmModel.C = [1; 1; 0; 0; 0];
0000 0];

camh



Example #3: Group Differences

A DCM models ©

® ¢
@@@@@@@"@@a@@@@

PR

input input input Input input
1 2 3 4 5 6 7 8 9 10 1"
B Family inference - number of regions
& Controls % mMcs < vs D population-level best model
= 1 =08 = 1
Fe] F] Fe)
[} g «©
B 08 e 8 08 0.7
a a 06 a =
8 06 g 8 o6 3 06
3 S04 g 3
$ 04 $ g 04 & 05
2 2 0.2 2 @
W 0.2 w w 0.2 Q
= = = < 04
§ o g o § o 3
w 2 areas 4 areas S5areas W 2 areas 4 areas 5 areas w 2 areas 4 areas 5 areas § 0.3
Z o
]
C Family inference - type of connections B 02
=
> Controls > MCs > 0.4
é 1 é 1 é 1 .
2 2 2 0 -t
[=] [=]
& 08 12345678 91011
8 06 g 06 8 o0s Models
8 3 8
g 0.4 3 0.4 g 0.4
> >
g 02 @ 0.2 4 02 BOIY etal., 2on
> > >
E E E o -
£ % hone F_FB & % none F_ FB &
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Example #3: Group Differences

0.08,

0.06r

0.04-

0.02¢

o

-0.02¢

Fronto-temporal backward connectivity

Controls MCS VS

Boly et al., 2011

camh .



Example #4: Pharmacological Intervention

Inter-regional Synaptic Coupling B  Placebo: population-level best model C Ketamine: population-level best model
IFG IFG IFG IFG
STG— STC STC— STC STG— STG STG— STC ol
| i i i ' T
LGP Y Right L& G Right LRSS & Right LA & Right = 0.7} B 06l
Input Input Input Input '§ O 6 | _§
Qo 0.5t Q
S e 0.4}
Adaptation and Inter-regional Synaptic Coupling 'g, 04 .. .§
FC Fe IFG Fe % 0.3 § 0.3
l lA 1T 1A ’ o
T : ) v ) —_ 0.2}
STG— STG STG— STG STG— STG EEe— St - 02. e %
tou poR o e ~ S
’ 4 Lo W T | — 5| T
Al — Al ; 'Al-—'Al‘. AIHAI " Al — Al ! %
Left 5 Right Left A Right Left N Right Left A Right 0 ) 0
Input Input Input Input
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Models Models

Schmidt, Diaconescu et al., 2013
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Example

Left

IFG
‘A
V.
STG~— STG
A A
v &
Al — Al

v

. Input

Right

Left STG Connectivity

Left A1 -

-t
e

L
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[a—

e
o

=

o N 4 wn [

ro L
N

o

2
—

— t 4 '
— nh O W
T T T '

N
T T

S

4: Pharmacological Intervention

Self-Reported Reduction in Control and Cognition
)

[ ]
[ ]
[ J
@
2]
[ J

[

<) e o °®
@ [ ]
PR ) PR Y M M - .
0 0.4 0.6 0.8 | 1.2 1.4

Reduction in Left Al - Left STG Coupling

Schmidt, Diaconescu et al., 2013
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Homework Assignment:
EEG Analysis:

1. Download the open source data file 'subjecti.bdf at
"https://www.fil.ion.ucl.ac.uk/spm/data/eeg_mmn/ and place in a new folder */day6/eeg/data/

2. Set your environment using “kcni_setup_paths”
3. Main script is “mmn_master_script”

4. Use the EEG tutorial code to compare the top 30% of *prediction error (PE) signals® generating
pseudo-conditions and ERPs of the top 30% and bottom 30% of PE.

-> Can you model these effects with DCM, and if yes, do you obtain the same connectivity
parameter estimates?

camh



Regression dynamic causal
modelling for tIMR



‘underlying’
connectivity

single subject, 5

SOLD estimated
signals parameters
" W ayg dis

‘ DCM A= 3 =
. ds1 dss
Py observation
® — model —>
Ix + C11 Cl4
s ‘ I\NM t €51 Cs4

R0ls, 4 experimental inputs




Linear

DCM: state equation

connectivity  extrinsic
between ‘driving’
regions Influences

ax | |
— = Ax + Cu
dt [ [

T
Changes in hidden experimental

hidden neuronal neuronal iNput
state state



DCM vs rDCM

~10 regions or less
BOLD — DCM — EC <100 connection strength parameters
hypothesis-based analysis only

EC: Estimated connectivity parameters



DCM vs rDCM

BOLD — DCM — EC

BOLD — OCM — EC

Regression dynamic causal modeling for IMRI, Frassle et al., 2017

~

<

-4

-4

er

10 regions or less

00 connection strength parameters
hypothesis-based analysis only

100 regions or more

0000 connection s

rength parameters

ables exploratory a

nalysis



1. transform BOLD to frequency domain

. 2. linearize hemodynamic model :
. 3. assume partial independence of connectivity parameters
. 4. use a Gamma prior for noise precision '

BOLD — OCM — EC

Regression dynamic causal modeling for IMRI, Frassle et al., 2017



State equation: “ — Ax+ Cu
dt
apply Fourier Transform: adx
— = AX +Cu
-7~ dt
f - dX . A . A A A
or - 1s: — = IlwX => iwX = AX + Cu

dt



Fixed hemodynamic response function h

(HRF):
Convolve h and iwx: 10, (@) = A (@) +- C/l\lﬁ
eth®x =7, iy, = Ay, + Chi

Y5 = noise-free prediction of the data



Discretize into N frequency/time points: ;) — imAg = zﬂii

m=|[0,1,...N—1] NT
Use linear approximation to N — (627”% — 1)
exponential: I

Continuous: Discrete:

N

(62”’%_1) y—; = Ay, + Chi

iwy; = Ay, + Chi



fMRI signal, with noise:

state equation becomes:

with noise vector:

assume partial independence; noise
precision parameter ;



rDCM state equation

HRF * experimental inputs
HRF * measured signals p— ‘
deS|gn matrix X = lyl, Yo Rl ...,ﬁﬁK]

Dependent variable: —’Y XH + U n0|se (V§ OaT_lleN)

\% i~y yl
= ( . 1) T m
para eter vector 0, = |, 1 ..os Gy gy Cpps -1 Crg]

endogenous connectivity matrix column A, ] ‘
driving inputs matrix column C,

R = number of regions. K = number of experimental inputs.



2 methods of implementing sparsity in network:



rDCM sparsity

2 methods of Imposing sparsity on connectivity matrix:

“Structural Prior” Method (ECst)

Fix connection strength parameter at zero for
region pairs with no anatomical connection

A: A:

1 0 1 1 0 a;1 0 aizape 0
01001 _MEM _ 04,0 0as
1 0 1 1 1 L 4 a1 0 ass asq4 ass
1 0 1 1 0 ag1 0 a43 aqa 0O
0 1 1 0 1 0 asy as3 0 as;

Oriors final estimates



DCM sparsity

2 methods of Imposing sparsity on connectivity matrix:

“Structural Prior” Method (ECst)

Fix connection strength parameter at zero for
region pairs with no anatomical connection

T U S S o Y S

_ O O = O

A=

L N - N

oriors

a7 0 aiz azg 0O

0 (> 0 0 5
a31 0 ass az4 ass

rDCM

] . —>
inversion

az1 0 ag3 agq 0

T S S o W
_ O ) = O

0 as» as3 0 as;

final estimates

“Sparsity Optimization” Method (ECsp)

‘Find’ probability that each connection is
present, then prune improbable connections

~_ LR = =2

~_ R = =2

A=

~_ LR L= =2

oriors

~__R =2

~_ LR = =2

rDCM

] . —>
inversion

A=

11 113 14

122 125
131 (33 034 A35
41 143 (44
(52 053 (55

final estimates



VVhole-pbrain effective connectivity
from resting-state VIRl
discriminates between LSD ano
placeno conaitions



—xample: Effective connectivity of LSD vs Placebo during resting state

| SD (Lysergic acid diethylamide) = MDD treatment

Could individual brain s brain connectivity
connectivity predict predictive of

|S brain connectivity

oredictive of LSD
condition vs placebo?

efficacy of LSD as subjective effects of
antidepressant? LSD?

=Xperiment: 45 participants
pharmacological double-blinded crossover (LSD vs placebo; 4 weeks interval)

Whole-brain (132 ROIls) BOLD data from resting state fMRI

Experimental data provided by Felix Muller, Department of Psychiatry, University of Basel, Basel



—xample: Effective connectivity of LSD vs Placebo during resting state

Question:
s effective connectivity predictive of LSD vs placebo conditions”?

rs-fMRI data connectivity ML classification performance
(training data) mMmodel comparison
: DSC;M —> EC ——train classifier — model
BOLD @,
rDCM _, EC —— train classifier — model :
. accuracy

rDCM: Regression dynamic causal modelling. ML: machine learning.
Regression dynamic causal modeling for resting-state fNMRI, Frassle et al., 2021



rDCM for resting-state fMRI: state equation

parame’[er Vector H [ r 1o oo Clr R Gpvpmrpnnelus

endogenous Connect|V|ty matrix column A, _ ‘

R = number of regions. K = number of experimental inputs.




Results:

—ffective Connectivity (structural prior method)

5006 connections compared | 677 statistically-significantly different connections (13.5%)

LSD

Placebo

LSD-Placebo
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Results: Effective Connectivity (sparsity optimization method)

17424 connections compared | 2845 statistically-significantly different connections (16.3%)

LSD-Placebo

LSD DEY Placebo

ngg‘Gr Par
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Results: Changes in Effective Connectivity

Top 10 ‘Most-Different’ (by t-statistic) Connections (all)

OFusGI(OccipitalFusiformGyrusLeft)->OFusGr(OccipitalFusiformGyrusRight)
OPr(OccipitalPoleRight)->OPI(OccipitalPoleLeft)

% AC(CingulateGyrus,anteriordivision)->AC(CingulateGyrus,anteriordivision) -
OPI(OccipitalPoleLeft)->OPr(OccipitalPoleRight)
OFusGr(OccipitalFusiformGyrusRight)->OFusGl(OccipitalFusiformGyrusLeft)
Cereb6l(Cerebelum6Left)->PreCGr(PrecentralGyrusRight) -

Putamenl->Cereb6r(Cerebelum6Right) -
sLOCI(LateralOccipitalCortex,superiordivisionLeft)->PreCGr(PrecentralGyrusRight)
COl(CentralOpercularCortexLeft)->SPLI(SuperiorParietalLobuleLeft)

% pSMGr(SupramarginalGyrus,posteriordivisionRight)->pSMGr(SupramarginalGyrus,posteriordivisionRight) -

ECst

OPr(OccipitalPoleRight)->OPI(OccipitalPoleLeft)
OFusGI(OccipitalFusiformGyrusLeft)->OFusGr(OccipitalFusiformGyrusRight)
OPI(OccipitalPoleLeft)->OFusGI(OccipitalFusiformGyrusLeft)
OPI(OccipitalPoleLeft)->OPr(OccipitalPoleRight)

% OPI(OccipitalPoleLeft)->OPI(OccipitalPoleLeft) -
COl(CentralOpercularCortexLeft)->SPLI(SuperiorParietalLobuleLeft) -
SFGI(SuperiorFrontalGyrusLeft)->PPI(PlanumPolareLeft) -
OPr(OccipitalPoleRight)->SCCr(SupracalcarineCortexRight) -
Cereb6l(Cerebelum6Left)->PreCGr(PrecentralGyrusRight)
ILOCr(LateralOccipitalCortex,inferiordivisionRight)->OFusGI(OccipitalFusiformGyrusLeft)

ECsp

Connections in top 10 for both positive connections Zz':SD <

Connections not in visual areas % negative connections

6
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ECst

ECsp

Results: Changes in Effective Connectivity

Top 10 ‘Most-Different’ (by t-statistic) Connections (self only)

AC(CingulateGyrus,anteriordivision)->AC(CingulateGyrus,anteriordivision)
pSMGr(SupramarginalGyrus,posteriordivisionRight)->pSMGr(SupramarginalGyrus,posteriordivisionRight)
aPaHCI(ParahippocampalGyrus,anteriordivisionLeft)->aPaHCI(Parahippocampal Gyrus,anteriordivisionLeft)
LGr(LingualGyrusRight)->LGr(LingualGyrusRight) -

OPI(OccipitalPoleLeft)->OPI(OccipitalPoleLeft) -
pITGr(InferiorTemporalGyrus,posteriordivisionRight)->plTGr(InferiorTemporalGyrus,posteriordivisionRight) -
pITGI(InferiorTemporalGyrus,posteriordivisionLeft)->pITGI(InferiorTemporalGyrus,posteriordivisionLeft) -
ICCr(IntracalcarineCortexRight)->ICCr(IntracalcarineCortexRight) -

Ver8(Vermis8)->Ver8(Vermis8)
OFusGr(OccipitalFusiformGyrusRight)->OFusGr(OccipitalFusiformGyrusRight) -

OPI(OccipitalPoleLeft)->OPI(OccipitalPoleLeft) -

Ver8(Vermis8)->Ver8(Vermis8) -
OFusGlI(OccipitalFusiformGyrusLeft)->OFusGI(OccipitalFusiformGyrusLeft)
pITGr(InferiorTemporalGyrus,posteriordivisionRight)->plTGr(InferiorTemporalGyrus,posteriordivisionRight)
OFusGr(OccipitalFusiformGyrusRight)->OFusGr(OccipitalFusiformGyrusRight) -
Cuneall(CunealCortexLeft)->Cuneall(CunealCortexLeft) -

LGr(LingualGyrusRight)->LGr(LingualGyrusRight) -
ILOCr(LateralOccipitalCortex,inferiordivisionRight)->iLOCr(LateralOccipitalCortex,inferiordivisionRight) -
ICCr(IntracalcarineCortexRight)->ICCr(IntracalcarineCortexRight) -

Pallidumr->Pallidumr -

Connections in top 10 for both positive connections c‘;':SD <

Connections not in visual areas negative connections

4 -2 0 2

t-statistic of LSD-Placebo
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Random Forest with 10-fold cross-

validation
Nregions Nconns Neats Ntrees ACC SEN SPE PPV NPV AUC 6,
FC 132 17424 36406 3646 FC|]0.89 0.92 0.88 0.90 0.93] 0.95 |2

—(Cst 132 17424 4374 4374 —(Cst]0.93 0.96 0.92 0.93 0.96] 0.96 |2
—Csp 132 17424 17424 17424 —Cspl0.91 0.94 0.90 0.91 0.95] 0.95 |2
SBAC
FC 0.90
g —Cest 0.94
= —Csp|  0.92

poredicted predicted poredicted
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Experimental Paradigm

* Inferring on the intentions of others

Volatility
Intention

Volatility
Decision Window o L.
prediction
error
Advice + Cue ATl
Fidelity
Fixation Advice
Time (s) prediction R
.  Response Model
error, &, 4
Advice _ Response
34 Accuracy

Diaconescu et al., PLoS CB 2014 camh



Advice Prediction

first fMRI study second fMRI study conjunction across studies
X=7,Y=27,2=52 X=7,Y=27,2=52 X=7,Y=27,2=52
62 0.5] IR TNEY A BRA LA AU 1 1§ iy & e

ot

Diaconescu et al., 2017, Soc Cogn Affect Neurosci
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i
Dynamic Causal Modelling for fMRI

Prediction error u,(t)

X = Ax + u,B@x + Cuy

S 3 P B R P R o

h Krembil Centre for
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Model Space i

1. O -
No modulation m—:n (t) s
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2.
Modulation of
~ self-inhibition

ol =la ol Ll slo oy, Lol + [5Gl Ll

Modulation of
“ forward
connection

ol =las ol Lalloy, ol Lal+ 3 o)Ll
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Types of model validity

\
1) Face Validity:

* Model Specification

« Simulation > In this tutorial
* Inversion

* Diagnostics

2) Construct Validity:
* VOI Extraction
* Model Specification
* Inversion
* Diagnostics
* Model Selection

3) Predictive Validity

camh



