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CAMH Land Acknowledgement

CAMH is situated on lands that have been occupied by First Nations for millennia; lands rich in 
civilizations with knowledge of medicine, architecture, technology, and extensive trade routes 

throughout the Americas. In 1860, the site of CAMH appeared in the Colonial Records Office of 
British Crown as the council grounds of the Mississaugas of the New Credit, as they were known at 

the time.

Today, Toronto is covered by the Toronto Purchase, treaty No. 13 of 1805 with the Mississaugas of the 
Credit.

Toronto is now home to a vast diversity of First Nations, Inuit, and Métis who enrich this city.

CAMH is committed to reconciliation. We will honour the land through programs and places that 
reflect and respect its heritage. We will embrace the healing traditions of the Ancestors, and weave 

them into our caring practices. We will create new relationships and partnerships with First Nations, 
Inuit, and Métis and share the land and protect it for future generations.
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Definitions
• Beliefs are represented as probability distributions
• For example: Gaussian (Normal) distributions
– The probability of 𝑥 is normally distributed with mean 𝜇 and variance 𝜎!

𝑝 𝑥 = 𝒩(𝑥; 𝜇, 𝜎!)

– Same thing, just expressed as precisions:

𝑝 𝑥 = 𝒩(𝑥; 𝜇, 𝜋) 𝜇 = mean
𝜋 = "

#!
= precision

Stephan, 2020



States, parameters, inputs
• States: quantities that evolve in time

– states 𝑥"
($)at the ith level and timepoint k

• Parameters: the structural determinants of the states
– parameters 𝜗 (subject-specific)

• Inputs: Perturbations at each timepoint
– inputs or perturbations 𝑢($) at timepoint k

𝑥(#)=	
𝑥!
(#)

:
:

𝑥%
(#)

• variable evolving over 
time, for N trials

• state equations (difference 
equation):

Stephan, 2020

𝑥(&) = 𝑓(𝑥 &() , 𝜃* , 𝑢 &() )



State-space representations: Markov Process

𝑦(+) = 𝑔 𝑥 + , 𝜃, + 𝜀(+)Stephan, 2020

ENVIRONMENTSYSTEM

measurement 
(response) equation: 

𝒚(𝒕) 𝒚(𝒕'𝟏)
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𝜃, 𝜃,

𝜃* 𝜃* …
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Prediction 
Errors

Predictions

The Bayesian Brain

• The brain is an inference machine
• Conceptualise beliefs as probability 

distributions
• Updates via Bayes’ rule:

Bayesian Inference

Reverend Thomas Bayes
1702-1761

𝑝 Θ 𝑦,𝑚 =
𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)

𝑝(𝑦,𝑚)

Sensory Data

Predictions
Evidence

Prior
Belief



𝑝 Θ 𝑦,𝑚 =
𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)

𝑝(𝑦,𝑚)

The Bayesian BrainBayesian Inference

Θ: parameters
y: data

Prior × Likelihood

Model evidence

Posterior

Reverend Thomas Bayes
1702-1761



𝑝 Θ 𝑦,𝑚 =
𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)

∫ 𝑝 Θ|𝑚 𝑝 𝑦 Θ,𝑚 𝑑Θ

The Bayesian BrainBayesian Inference

Reverend Thomas Bayes
1702-1761

Prior × Likelihood = Generative Model

Model evidence

Θ: parameters
y: data

Posterior



Bayes Rule: Binary Outcome
𝑝 Θ 𝑦,𝑚 =

𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)
𝑝(𝑦,𝑚)

Coin toss:



Bayes Rule: Binary Outcome
𝑝 Θ 𝑦,𝑚 =

𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)
𝑝(𝑦,𝑚)



Bayes Rule: Binary Outcome
𝑝 Θ 𝑦,𝑚 =

𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)
𝑝(𝑦,𝑚)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑃𝑟𝑖𝑜𝑟 × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑝 𝜃 𝑦 = 𝑃 𝜃 × 𝑃 𝑦 𝜃

= Beta(𝛼, 𝛽) × Binomial (𝛼, 𝛽, 𝜃)



Bayes Rule: Binary Outcome
𝑝 Θ 𝑦,𝑚 =

𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)
𝑝(𝑦,𝑚)



Frequentist versus Bayesian Approaches
𝑝 Θ 𝑦,𝑚 =

𝑝 Θ|𝑚 𝑝(𝑦|Θ,𝑚)
𝑝(𝑦,𝑚)



Categories of Priors
• Objective priors
– noninformative/flat priors

• Subjective priors
– subjective but not arbitrary
– hypothesis-driven
– can be the result of previous 

empirical studies

• Shrinkage priors
– emphasize regularization and sparsity

• Empirical priors
– learn parameters of prior distributions 

from the data ("empirical Bayes") 

prior

noninformative/flat priors

likelihoodposterior

prior

shrinkage priors

likelihood

posterior



INFERENCE 𝜇!"
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𝜎'*%+

DECISION

Simple Example: Temperature Estimation



Simple Example: Temperature Estimation
What is the temperature outside?

𝑦 = 𝜃 + 𝜀

Likelihood & Prior: 

𝑝(𝑦|𝜃)~𝒩(𝜃, 𝜎/0)

𝑝(𝜃)~𝒩(𝜇12342 , 𝜎123420 )

𝜃

𝜎,!
𝜇#$%&$

𝜎'()*(!
Posterior: 

𝑝(𝜃|𝑦)~𝒩(𝜇145+ , 𝜎145+0 )



Simple Example: Temperature Estimation
What is the temperature outside?

𝑦 = 𝜃 + 𝜀
𝜃

𝜇#$%&$

𝜎'()*(!

Posterior: 

𝑝 𝜃 𝑦 ~𝒩(𝜇145+ , 𝜎145+0 )

𝜇#&!'

𝜎'*%+!

1
𝜎145+0 =

1
𝜎/0

+
1

𝜎123420

𝜇145+ = 𝜎145+0 ( )
6!"

y + )
6!"
𝜇12342)

𝜎,!



Simple Example: Temperature Estimation
What is the temperature outside?

𝑦 = 𝜃 + 𝜀
𝜃

𝜇#$%&$

𝜎'()*(!

Posterior: 

𝑝 𝜃 𝑦 ~𝒩(𝜇145+ , 𝜎145+0 )

𝜇#&!'

𝜎'*%+!

𝜋145+ = 𝜋/ + 𝜋12342

𝜇145+ =
𝜋/
𝜋145+

y +
𝜋12342
𝜋145+

𝜇12342

Precision Ratio Weighting

𝜎,!



Bayes versus Bayes
𝑝 A 𝐵 =

𝑝 𝐵|𝐴 𝑝(𝐴)
𝑝(𝐵)Bayes’ Rule

Statistical rule describing the relationship 
between conditional probability distributions 

Model fitting/Parameter estimation: Model of a computation performed by the 
brain:

𝑝 Θ 𝑑𝑎𝑡𝑎,𝑚 =
𝑝 Θ|𝑚 𝑝(𝑑𝑎𝑡𝑎|Θ,𝑚)

𝑝(𝑑𝑎𝑡𝑎|𝑚)

prior likelihood

model evidence

posterior

Model Comparison:

𝑃 world sensory input)

=
𝑃(world)𝑃 sensory data world)

𝑃(sensory input)

Bayes as a model of behaviour

prior likelihood

model evidence

posterior



Sensory Data

Predictions
Inferred 

Hidden States
True

Hidden States

Perception as Bayesian Inference

Inference Generative Modelbr
ai

n
w

or
ld

𝑃(state of the world)
prior

internal model 
of the world

𝑃 sensory data state of the world)
sensation

𝑃 state sensory input)
posterior

𝑃 state sensory input) =
𝑃(state of the world)𝑃 sensory data state of the world)

𝑃(sensory input)



Optimal Integration: Uncertainty Considered
What is your prediction about the 
temperature outside?

𝜇#$%&$

𝜎'()*(

𝜇#&!'

𝜎'*%+

𝜋145+ = 𝜋/ + 𝜋12342

𝜇145+ =
𝜋/
𝜋145+

𝜇57 +
𝜋12342
𝜋145+

𝜇12342

𝑃 state sensory input) =
𝑃(state of the world)𝑃 sensory data state of the world)

𝑃(sensory input)

𝑝(𝑦|𝜃)~𝒩(𝜇57 , 𝜎57)
𝑝(𝜃)~𝒩(𝜇12342 , 𝜎12342)
𝑝 𝜃 𝑦 ~𝒩(𝜇145+ , 𝜎145+)

𝜇!"

𝜎%& 𝜎 = 𝜋()



Sensory Data

Predictions
Inferred 

Hidden States
True

Hidden States

Optimal Bayesian Learning

Generative Modelbr
ai

n
w

or
ld

𝑃 state sensory input)
posterior

𝑃 state sensory input) =
𝑃(state of the world)𝑃 sensory data state of the world)

𝑃(sensory input)

Inference

𝜇#&!'

𝜎'*%+

𝑥0

𝜗



Short Quiz

Prior Likelihood

Posterior

Synonyms/
Keywords:

Synonyms/
Keywords:

Synonyms/
Keywords:



Short Quiz

Prior Likelihood

Posterior

Synonyms/
Keywords:
expectation
knowledge
bias

Synonyms/
Keywords:
belief update
training
learning

Synonyms/
Keywords:
data
sensory input
experience



• Wrong Priors
– Uncertainty too low à beliefs too rigid (underfitting)
– Uncertainty too high à high sensitivity to noise (overfitting)
– Displaced center of mass à biased interpretations
– Overestimated volatility à prior knowledge is partly neglected 
– Underestimated volatility à failure to track changes in the world

Likelihood Function
– Precision too high/low à evidence is weighted too much/little

Modelling Abnormal Beliefs
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Modelling Abnormal Beliefs



How are these beliefs formed?

sensory input
likelihood

prediction
posterior

expectation
prior

𝑝(𝑥)~𝒩(𝜇8 , 𝜋8())

𝑝(𝑢|𝑥)~𝒩(𝜇9|8 , 𝜋/())

𝑝 𝑥 𝑢 =
𝑝 𝑢 𝑥 𝑝(𝑥)

∫ 𝑝 𝑢 𝑥; 𝑝 𝑥; 𝑑𝑥′
~𝒩(𝜇8|9 , 𝜋8|9() )



Updates to the Sufficient Statistics

𝜇-|/ 𝜇- 𝑢

𝜋1|2 = 𝜋1 + 𝜋3

𝜇1|2 = 𝜇1 +
𝜋3
𝜋1|2

𝑢 − 𝜇1
Belief Update

Weight (Learning Rate) = ;<=>?@; =A&BA CADBEFEG ;ABA
;<=>?@; =A DCBADHI JE<=

Prediction Error

Mathys, 2019



What about dynamics?

Temperature

We relax the assumption that 
the underlying hidden state 𝑥 is 
stationary 

• we replace it with a 
Gaussian random walk 

• this gives us the Kalman 
filter: 



What about dynamics?

Temperature

Kalman filter: 

𝑝 𝑢 & 𝑥 & ~𝒩 𝑢 & 𝑥 & , 𝜀

𝑝 𝑥 & 𝑥 &() , 𝜗 ~
𝒩 𝑥 & 𝑥 &() , 𝜗

𝜗 = seasons



What about dynamics?

Posterior: 

𝑝(𝑥 &() )~𝒩(𝑥 &() ; 𝜇8
&() ,

1

𝜋8
&() )

𝜋8
(&) = )

6#
(%&')<=

+ )
/

= Q𝜋8
(&()) + Q𝜋9

𝜇8
(&) = 𝜇8

(&()) +
Q𝜋9
𝜋8

& (𝑢 & − 𝜇8
(&()))

𝜗 = seasons

Prior: 

Belief Update
Weight (Learning Rate) = ;<=>?@; =A&BA CADBEFEG ;ABA

;<=>?@; =A DCBADHI JE<=

Prediction Error



Kalman Filter 𝜇8
(&) = 𝜇8

(&()) +
Q𝜋9
𝜋8

& (𝑢 & − 𝜇8
(&()))

Prediction 
Errors

(𝑢 J − 𝜇K
(JL"))

Predictions
𝜇K
(JL") Belief

Precision 𝜋-
#

Sensory
Precision
Q𝜋9



What about dynamics?

TemperatureClimate
Change



The hierarchical Gaussian filter (HGF): a 
computationally tractable model for individual 
learning under uncertainty (Mathys et al., 2011; 2014) 

Mathys et al., Front Hum Neurosci, 2011

Level 1: Stimulus category 

𝑝 𝑥! = 1 =
1

1 + 𝑒)*!

Level 3: Phasic volatility

𝑝 𝑥+
(#) ~𝒩(𝑥+

#)! , 𝜗)

Level 2: Tendency towards category 1 

𝑝 𝑥,
(#) ~𝒩(𝑥,

#)! , 𝑒(-*"
#$% '.))



The hierarchical Gaussian filter (HGF): a 
computationally tractable model for individual 
learning under uncertainty 

Level 1: Stimulus category 

Level 3: Phasic volatility

Level 2: Tendency towards category 1 

Mathys et al., Front Hum Neurosci, 2011



Mathys et al., Front. Hum. Neurosci., 2011

Hierarchical Gaussian Filtering

With only 1 level, 
the HGF is a 
Kalman filter. 



Mathys et al., Front Hum Neurosci, 2011

events in the world

association

volatility

sensory stimuli

1
1
kx -

1
kx

1
2
kx -

2
kx

3
kx1

3
kx -

J

1ku - ku

Mathys et al., Front Hum Neurosci, 2014

Hierarchical Gaussian Filtering





Generative Model

3 8?

] 3 8? ] 3 8

cue
(max. 4 s)

delay (5 s) monitor (2 s)

inter-trial interval
(5..7 s)
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Score:  31
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correct)

Trial
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Low Volatility High Volatility



Generative Model

Model Inversion

3 8?

] 3 8? ] 3 8

cue
(max. 4 s)

delay (5 s) monitor (2 s)

inter-trial interval
(5..7 s)

Score:  28

Score:  28 Score:  31

Score:  31

no response
(8 s)

Score:  31

No response!

Probability 
(card 1 is 
correct)

Trial

A

B

Low Volatility High Volatility



HGF HGF – Generative Model



HGF: Variational Inversion and Update 
Equations

𝒩(𝜇+
# , 𝜎+

# )

𝒩(𝜇,
# , 𝜎,

# )

Level 3: Belief about volatility

Level 2: Belief about tendency

𝐵𝑒𝑟𝑛(𝜇!
# )

Level 1: Prediction of categories Level 1: Observations: category 1

𝑝 𝑥!
(#) = 1 =

1
1 + 𝑒)*!

Level 3: Phasic Volatility

𝑝 𝑥+
(#) ~𝒩(𝑥+

#)! , 𝜗)

Level 2: Tendency towards category 1

𝑝 𝑥,
(#) ~𝒩(𝑥,

#)! , 𝑒(-*"
#$% '.))

HGF: Model of Beliefs HGF: Model of Inputs



Mathys et al., Front. Hum. Neurosci., 2011; 2014

Variational Inversion and Update Equations

ag
en

t
w

or
ld

Inversion of HGF-GM: mean field approximation and fitting quadratic approximations 
to the resulting variational energies (Mathys et al., 2011)

This leads to simple one-step update equations (HGF)   



HGF: Update Equations

Prediction 
Errors

Predictions Belief
Precision

Sensory
Precision

Hierarchy

• Updates as precision-weighted 
prediction errors

Δ𝜇!
(#) ∝

$𝜋%&'
(#)

𝜋!
(#) 𝛿!&'

(#)

Sensory
Precision

Belief
Precision

Belief
Update

PE

Mathys et al., Frontiers Human Neurosci 2011
Mathys et al., Frontiers Human Neurosci 2014



Updates at the First Level

Posterior: 

𝑝(𝑥0
&() )~𝒩(𝑥0

&() ; 𝜇0
&() ,

Q𝜋)
&

𝜋0
& )

Q𝜋)
&

𝜋0
& =

Q𝜋)
(&)

1
𝜎0
(&()) + exp(𝑘0𝜇K

&() +𝜔0)
+ Q𝜋)

(&)

𝜇0
(&) = 𝜇0

(&()) +
Q𝜋)
&

𝜋0
& (𝑢 & − 𝜇)

(&()))

Prior: 

Outcome Precision

Informational Uncertainty
Environmental uncertainty
(instead of the constant 𝝑 in 
the Kalman filter)



Rescorla-Wagner Learning:

Belief Update

Learning Rate/Weight

Δ𝜇!
(#) ∝ 𝜶𝛿!&'

(#)

Unpacking the Learning Rate



Hierarchical Gaussian Filter :

Belief Update

Weight

= ;<=>?@; =A&BA CADBEFEG ;ABA
;<=>?@; =A DCBADHI JE<=

Δ𝜇!
(#) ∝

$𝜋%&'
(#)

𝜋!
(#) 𝛿!&'

(#)

Unpacking the Learning Rate



HGF: Dynamic Learning Rates

Diaconescu et al., 2014
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HGF: Dynamic Learning Rates

Diaconescu et al., 2014
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Modelling Abnormal Beliefs
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Thank You!

Knowledge Questions?

Training
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“My senses are sharpened.”

“Sights and sounds possess a 
keenness that I have never 
experienced before.”

“I had to make sense - any sense - out of all 
these uncanny coincidences. 

I did it by radically changing my conception 
of reality.”

Kapur, 2003 Chadwick, 2009



“My senses are sharpened.”

“Sights and sounds possess a 
keenness that I have never 
experienced before.”

“I had to make sense - any sense - out of all 
these uncanny coincidences. 

I did it by radically changing my conception 
of reality.”

“My senses are 
sharpened.” “I had to make sense - any 

sense - out of all these 
uncanny coincidences.” 



§ Modelling early-psychosis

Psychosis Treatment

Symptom 
Severity

Phase
At-risk 

Psychosis

“My senses are 
sharpened.” “I had to make sense - any 

sense - out of all these 
uncanny coincidences.” 



Hypothesis: Models of Psychosis Across Stages
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Hypothesis: At-Risk Phase
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“My senses are 
sharpened.”

Phase
Psychosis TreatmentAt-risk 
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Precision

Sensory 
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Errors

Predictions

Hypothesis: Delusional Conviction

Prediction 
Errors
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Belief 
Precision

Sensory 
Precision

“I had to make sense - any sense 
- out of all these uncanny 
coincidences.” 
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Early Psychosis and Persecutory Delusions

Diaconescu, Hauke & Borgwardt, 2019

𝜇#&!'

𝜎'*%+

𝜇#&!'

𝜎'*%+



Empirical Validation: Healthy Population

3 - 4 sec 2 sec 1 sec5 sec
advice / 

cue decision outcome

++ + +

Diaconescu et al., 2014, PLoS Computational Biology

Diaconescu et al., 2017, SCAN

Key features of the task:
• recommendations of adviser were

veridical (pre-recorded videos)
• volatility of advice (stable vs. 

volatile)
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Clinical Applications

3 - 4 sec 2 sec 1 sec5 sec
advice / 

cue decision outcome

++ + +

• 15 unmedicated (≤ 7 days of antipsychotic medication) first-episode psychosis patients 
(FEP)

• 16 individuals at clinical high-risk for psychosis (CHR)
• 16 healthy controls (HC) that were matched to CHR for age, gender, handedness, and 

cannabis consumption



Diaconescu et al., PLoS Computational Biology 2014

How do we model persecutory beliefs?

Computational Model of Learning

Volatility
of

Intention

Response Model

Accuracy

Adviser 
Fidelity

Choice

𝝎

κ

𝜻

Volatility 
prediction

error

Outcome
prediction 

error

𝝁𝟑,𝟎 𝒎𝟑

Mathys et al., Front Hum Neurosci, 2014

Enhanced Learning Rate/Aberrant Salience
Hypothesis I:

Kapur et al., 2003
Roiser et al., 2009



Diaconescu et al., PLoS Computational Biology 2014

How do we model persecutory beliefs?

Computational Model of Learning

Volatility
of

Intention

Response Model

Accuracy

Adviser 
Fidelity

Choice

𝝎

κ

𝜻

𝝁𝟑,𝟎 𝒎𝟑

Mathys et al., Front Hum Neurosci, 2014

Altered Perception of Volatility
Hypothesis II:

Cole*, Diaconescu* et al., 2014
Reed et al., 2020

Mean Reverting HGF
Ornstein-Uhlenbeck Process

Volatility 
prediction

error

Outcome
prediction 

error



Diaconescu et al., PLoS Computational Biology 2014

Models of Persecutory Delusions

Mathys et al., Front Hum Neurosci, 2014
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of 

Intention

Response Model

Advice 
Accuracy

Volatility 
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Volatility
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Intention

Response Model
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Fidelity

Response

µ𝟑𝟎 𝒎𝟑

Hypothesis I: HGF Hypothesis II: Mean-reverting HGF

Phasic learning rate

Tonic learning rate

Altered perception 
of volatility

Volatility 
prediction

error

Advice
prediction 

error

Cole et al. (2020)
Diaconescu et al. (2019)

Reed et al. (2020)

Diaconescu et al. (2014)
Reed et al. (2020)

Diaconescu et al. (2020)
Reed et al. (2020)

Advice 
Accuracy



HC CHR FEP

Interpretation
Evidence for altered perception of environmental volatility in FEP.

Model Attributions



“Intentions were perceived as 
increasingly volatile over time in 

FEP compared to HC”

Enhanced Perception of Volatility & Decoupling

“FEP displayed reduced coupling 
strength between hierarchical levels 

compared to HC”



Clinical Relevance: Parameters & Symptom Severity
m3 

• correlated positively with PANSS positive 
symptoms (r = 0.32, p = 0.026, pbf = 0.158)

Example

κ
• correlated negatively with PANSS negative 

symptoms (r = -0.39, p = 0.008, pbf = 0.048)

Example



Results: Early Psychosis and Belief Uncertainty
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Applications: Delusional Conviction

3 - 4 sec 2 sec 1 sec5 sec
advice / 

cue decision outcome

++ + +

Katharina Wellstein



Framing B (collaborative)
Screen presented 4 sec before start of task

Framing B (collaborative)
Screen presented 4 sec before start of task

Frame A: Dispositional Focus

Frame B: Situational Focus

Experimental Frames:

Wellstein*, Diaconescu* et al., 2019, Schizophrenia Research.
Diaconescu*, Wellstein*  et al., 2020, Journal of Abnormal Psychology, Special Issue: Predictive Coding and Psychopathology.

What about delusional conviction?
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Diaconescu et al., PLoS Computational Biology 2014

Models of Persecutory Delusions

Mathys et al., Front Hum Neurosci, 2014
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Diaconescu et al., PLoS Computational Biology 2014

Models of Persecutory Delusions

Mathys et al., Front Hum Neurosci, 2014
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Evolution Rate: 𝝎

Frame: Dispositional
Group: Low PD

Situational
Low PD

Dispositional 
High PD

Situational
High PD

Prediction 
Errors

Predictions
Belief 
Precision

Sensory 
Precision

Results: Paranoid Ideation and Precision
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Conclusions
Generative model of beliefs
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= paranoia
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– Computational Level: predictions, prediction errors
– Algorithmic Level: reinforcement learning, 

hierarchical Bayesian inference, predictive coding
– Implementational Level: Brain activity, 

neuromodulation

§ 3 ingredients:

1. Experimental 
paradigm:

2. Computational 
model of learning:

3. Model-based fMRI 
analysis:

David Marr, 1982

Three Levels of Inference



Introduction
structural, functional and effective connectivity

• structural connectivity
= presence of axonal connections

• functional connectivity 
= statistical dependencies between regional time series

• effective connectivity 
= causal (directed) influences between neuronal populations

connections are recruited in a context-dependent fashion

O. Sporns 2007, Scholarpedia

structural connectivity functional connectivity effective connectivity



Dynamic Causal Modelling (DCM)

• DCM framework was introduced in 2003 for fMRI by Karl Friston, 
Lee Harrison and Will Penny (NeuroImage 19:1273-1302)

• Application: FMRI data
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Connections are recruited in a context-dependent fashion
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Synaptic strengths are context-sensitive: 
They depend on spatio-temporal patterns of 

network activity.



Dynamic Causal Modeling for fMRI: Example

Is the red letter left 
or right from the 
midline of the 
word?

group analysis (random effects),
n=16, p<0.05 corrected

analysis with SPM2

Task-driven
lateralisation

letter decisions > spatial decisions

tim
e

•
•
•

Does the word 
contain the letter A 
or not?

spatial decisions > letter decisionsStephan et al. 2003, Science



Bilateral ACC activation in both tasks –
but asymmetric connectivity

Stephan et al. 2003, Science

IPS

IFG

Left ACC ® left inf. frontal gyrus (IFG):
increase during letter decisions.

Right ACC ® right IPS:
increase during spatial decisions.

left ACC (-6, 16, 42)

right ACC (8, 16, 48)
spatial vs letter

decisions

letter vs spatial
decisions

group analysis
random effects (n=15)

p<0.05, corrected (SVC)



Stephan et al. 2003, Science

bVS= -0.16

bL=0.63

Signal in left ACC
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Signal in right ACC

bVS=0.50

Left ACC signal plotted against left IFG

spatial
decisions
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decisions

letter
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spatial
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Right ACC signal plotted against right IPS

Dynamic Causal Modeling for fMRI: Example



The problem of hemodynamic convolution

Goebel et al. 2003, Magn. Res. Med.



• Cognitive network model:                    
directly at the neural level

• The modelled neuronal dynamics (x) are 
transformed into area-specific BOLD signals 
(y) by a hemodynamic model (λ).

The aim of DCM is to estimate parameters at 
the neuronal level such that the modelled 
and measured BOLD signals are maximally* 
similar.

Neuronal vs. BOLD level



Dynamic Causal Modeling for fMRI: Example

LG
left

LG
right

RVF LVF

IFG
right

IFG
left

x1 x2

x4x3

u2 u1

1 11 1 12 2 13 3 12 2

2 21 1 22 2 24 4 21 1

3 31 1 33 3 34 4

4 42 2 43 3 44 4

x a x a x a x c u
x a x a x a x c u
x a x a x a x
x a x a x a x

= + + +
= + + +
= + +
= + +

!

!

!

!

Example: 
a linear system 
of dynamics in 
visual cortex

LG = lingual gyrus
IFG = inferior frontal gyrus

Visual input in the
- left (LVF)
- right (RVF)
visual field.



Example: 
a linear system 
of dynamics in 
visual cortex

LG = lingual gyrus
FG = fusiform gyrus

Visual input in the
- left (LVF)
- right (RVF)

visual field.
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Extension: 
bilinear 
dynamic 
system
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endogenous 
connectivity

direct inputs

modulation of
connectivity

Neural state equation CuxBuAx j
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DCM parameters =  rate constants

dx ax
dt

= 0( ) exp( )x t x at=

The coupling parameter a determines 
the half life of x(t)

Integration of a first-order linear differential equation gives an
exponential function:

00.5x

a/2ln=t

If AàB is 0.10 s-1 this means that, per unit time, the increase in 
activity in B corresponds to 10% of the activity in A

0

0

( ) 0.5
exp( )

x x
x a

t
t

=
=

t/2ln=a

The coupling 
parameters describe 
the speed of the 
exponential change
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Havlicek et al. 2015Marreiros et al. 2008

𝑑𝑋&(𝑡)
𝑑(𝑡) = −𝜎 ) 𝑋& 𝑡 − 𝜇 ) 𝑋' 𝑡 + 𝑐 ) 𝑢 𝑡

𝑑𝑋'(𝑡)
𝑑(𝑡) = 𝑋& 𝑡 − 𝑋' 𝑡

𝑑𝑋&(𝑡)
𝑑(𝑡)

= −𝜎 ) 𝑋& 𝑡 − 𝜇 ) 𝑋' 𝑡 + 𝑐 ) 𝑢 𝑡

𝑑𝑋$(𝑡)
𝑑(𝑡) = 𝜆(𝑋% 𝑡 − 𝑋$ 𝑡 )

DCM for fMRI Extensions

Single State-DCM 2 State-DCM Physiological-DCM

Thanks to Uludağ, 2021

Friston et al. 2003

𝑑𝑋&(𝑡)
𝑑(𝑡)

= −𝜎 ) 𝑋& 𝑡 + 𝑐 ) 𝑢 𝑡



How about the hemodynamic forward model?
From neuronal to hemodynamic response

Uludağ, 2021

Havlicek et al. 20151. Neural model



How about the hemodynamic forward model?
From neuronal to hemodynamic response

Uludağ, 2021

Havlicek et al. 20152. Neurovascular Coupling1. Neural model



How about the hemodynamic forward model?
From neuronal to hemodynamic response

1. Neural model 2. Neurovascular Coupling
3. Hemodynamic Model

Uludağ, 2021

Havlicek et al. 2015



Dynamic Causal Modeling for fMRI

Uludağ, 2021

Friston et al. 2003

1.

2.

3.

𝛾
Biswal et al., 1995

Zappe et al. 2008
Attwell et al. 2010



Dynamic Causal Modeling for fMRI

Uludağ, 2021

Friston et al. 2003

1.

2.

3.

Havlicek et al. 2015

Zappe et al. 2008
Attwell et al. 2010Biswal et al., 1995

𝛾



Dynamic Causal Modeling for fMRI
Main Differences: Neurovascular Coupling

Uludağ, 2021

Friston et al. 2003 Havlicek et al. 2015

Feedback based: damped oscillator     strictly feed-forward

𝛾
𝛿

𝜌



Dynamic Causal Modeling for fMRI
Results: Better Data-Fitting!

Uludağ, 2021

Havlicek et al. 2015

P-DCM:Standard-DCM:
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• Combining the neural and 
hemodynamic states gives the 
complete forward model.

• An observation model
includes measurement 
error e and confounds X (e.g. 
drift).

• Bayesian inversion: parameter 
estimation by means of 
variational EM under Laplace 
approximation

• Result:
Gaussian a posteriori
parameter distributions, 
characterised by 
mean ηθ|y and 
covariance Cθ|y.

Overview:
parameter estimation

ηθ|y

neural state
equation( )jjx A u B x Cu= + +å!



DCM uses a Bayesian approach

)()|()|( qqq pypyp µ

)|( qyp )(qp

Bayes theorem allows one to formally 
incorporate prior knowledge into 
computing statistical probabilities.

In DCM: 
empirical, principled & shrinkage priors.

The “posterior” probability of the 
parameters given the data is an optimal 
combination of prior knowledge and 
new data, weighted by their relative 
precision.

new data prior knowledge

posterior       µ likelihood    ·  prior



Bayesian statistics

Parameters governing
• Hemodynamics in a single region
• Neuronal interactions

Constraints (priors) on
• Hemodynamic parameters

- empirical 

• Self connections are negative
-principled

• Other connections
- shrinkage

)()|()|( qqq pypyp µ
posterior       µ likelihood    ·  prior

)|( qyp )(qp
new data prior knowledge
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Friston et al. 1997, NeuroImage
Büchel & Friston 1997, Cereb. Cortex

V1 x Att.

=

V5

V5

Attention

Quiz: Can DCM Explain Your Data?
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Quiz: can this DCM explain your data? 
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Quiz: Can DCM Explain Your Data?
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Quiz from Hanneke den Ouden, 2016



Quiz: Can DCM Explain Your Data?

41 

Quiz: can this DCM explain your data? 
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attention 

V1 

V5 

SPC 

V1 

V5 

SPC 

motion 

photic 

attention 

attention 

V1 

V5 

SPC 

motion 
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photic 
attention 
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motion 

photic 
attention 3 

Quiz from Hanneke den Ouden, 2016



( , , )x f x u q=!
neural states dynamics

Electromagnetic
observation model:
spatial convolution

• simple neuronal model
• slow time scale

• complicated neuronal model
• fast time scale

fMRI EEG/MEG

inputs

Hemodynamic
observation model:
temporal convolution

DCM Across Data Modalities

Thanks to J. Daunizeau



DCM Across Data Modalities

( )
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q
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í
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• DCM: model structure

1

2

4
3

q24

u

( ), ,p y mq jÞ
likelihood

• DCM: Bayesian inference

( ) ( ) ( )ˆ , ,p y m p m p m d dq q q j q j q j= óô
õ

( ) ( ) ( ) ( ), ,p y m p y m p m p m d dq j q j j q= óô
õ

model evidence:

parameter estimate:

priors on parameters

J. Daunizeau



Neural ensembles dynamics
multi-scale perspective

Golgi Nissl

internal granular
layer

internal pyramidal
layer

external pyramidal
layer

external granular
layer

mean-field firing rate synaptic dynamics

macro-scale meso-scale micro-scale

EP

EI

II

J. Daunizeau



Neural ensembles dynamics
from micro- to meso-scale
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Neural ensembles dynamics
synaptic kinematics
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Neural ensembles dynamics
intrinsic connections within the cortical column

Golgi Nissl

internal granular
layer

internal pyramidal
layer

external pyramidal
layer

external granular
layer

spiny 
stellate 

cells

inhibitory 
interneurons

pyramidal 
cells

intrinsic 
connections g 1  g 2

 g 3 g 4

7 8
2 2

8 3 0 8 7

1 4
2 2

4 1 0 4 1

0 5 6

2 5
2 2

5 2 1 5 2

3 6
2 2

6 4 7 6 3

( ) 2

( ) 2

( ) 2

( ) 2

e e e

e e e

e e e

i i i

S

S

S
x

S

µ µ

µ g k µ k µ k µ

µ µ

µ g k µ k µ k µ

µ µ µ
µ µ

µ g k µ k µ k µ
µ

µ g k µ k µ k µ

=

= - -

=

= - -

= -

=

= - -

=

= - -

!

!

!

!

!

!

!

!

!

J. Daunizeau



Neural ensembles dynamics
extrinsic connections between brain regions

extrinsic
forward 

connections

spiny 
stellate 

cells

inhibitory 
interneurons
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Observation mappings
the electromagnetic forward model

( ) ( ) ( )( ) ( ) ( )
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Bayesian inference
forward and inverse problems

( ),p y mJ

forward problem

likelihood

( ),p y mJ

inverse problem

posterior distribution

J. Daunizeau



generative model m

likelihood

prior

posterior

Bayesian inference
likelihood and priors

( ),p y mJ

( )p mJ
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Bayesian inference
DCM: key model parameters

state-state coupling( )21 32 13, ,q q q

3
uq input-state coupling

13
uq input-dependent modulatory effect



What are the DCM parameters?
DCM parameters = rate constants

= 78
7+
= 𝑎))𝑥) 𝑥) 𝑡 = 𝑥) 0 exp(𝑎))𝑡)

If A>B is 0.1 s-1, this means
that per unit time, the
increase in activity in B
corresponds to 10% of the
current activity in A



Inference about DCM parameters:
group analysis (classical)

• In analogy to other “random effects” analyses, 2nd level/group 
analyses can be applied to DCM parameters:

Separate fitting of identical models 
for each subject

Selection of bilinear parameters of 
interest

one-sample t-test: 
parameter > 0 ?

paired t-test: 
parameter 1 > 
parameter 2 ?

rmANOVA: 
e.g. in case of multiple 

sessions per subject



Stephan et al. 2010, 
NeuroImage

DCM roadmap



Value of DCM

IFG IFG



MMNMMN

Difference
Waveform

(Stand - Dev)

Schizophrenia vs. Controls

Mismatch Negativity (MMN)



S-D: reorganisation
of the connectivity structure

rIFG

rSTG
rA1

lSTG
lA1

rIFG

rSTG

rA1

lSTG

lA1

standard condition (S)

deviant condition (D)

t ~ 200 ms

sequence of auditory stimuli

S S DS S S

Modelling Auditory MMN Effect



Example #1: Role of feedback connections

Garrido et al., 2007



Example #1: Role of feedback connections

Garrido et al., 2007



Example #1: Role of feedback connections

time (ms) time (ms)

Garrido et al., 2007



Example #2: Networks and the MMN

Garrido et al., 2008



Example #2: Networks and the MMN

Garrido et al., 2008

Deviants vs. Standards

- Significant coupling decrease (p<0.003 ) in 
backward connection linking rIFG to rSTG

- Trend increase (p<0.1) for:
- Intrinsic connection within rA1
- Forward connection linking lA1 to 

lSTG



S-D: reorganisation
of the connectivity structure

rIFG

rSTG
rA1

lSTG
lA1

rIFG

rSTG

rA1

lSTG

lA1

standard condition (S)

deviant condition (D)

t ~ 200 ms

sequence of auditory stimuli

S S DS S S

Modelling Auditory MMN Effect



Baseline Connectivity: A Matrix Cognitive Effect: B Matrix 
sequence of auditory stimuli

S S DS S S

Modelling Auditory MMN Effect



Baseline Connectivity: A Matrix 

left A1 right A1 left STG right 
STG

right 
IFG

left A1
right A1
left STG FC=1
right 
STG

FC= 1

right IFG FC=1

sequence of auditory stimuli

S S DS S S

Modelling Auditory MMN Effect



Baseline Connectivity: A Matrix 
sequence of auditory stimuli

S S DS S S

left A1 right A1 left STG right 
STG

right 
IFG

left A1 BC= 1
right A1 BC=1
left STG FC
right 
STG

FC BC=1

right IFG FC

Modelling Auditory MMN Effect



Baseline Connectivity: A Matrix 
sequence of auditory stimuli

S S DS S S

left A1 right A1 left STG right 
STG

right 
IFG

left A1 LC BC
right A1 LC BC
left STG FC LC
right 
STG

FC LC BC

right IFG FC

Modelling Auditory MMN Effect



sequence of auditory stimuli

S S DS S S

left A1 right A1 left STG right 
STG

right 
IFG

left A1 LC BC
right A1 LC BC
left STG FC LC
right 
STG

FC LC BC

right IFG FC

Cognitive Effect: B Matrix 

Modelling Auditory MMN Effect



Baseline Connectivity: A Matrix Cognitive Effect: B Matrix 

Model Input: C Matrix 

MATLAB



Boly et al., 2011

Example #3: Group Differences



Example #3: Group Differences

Boly et al., 2011



Schmidt, Diaconescu et al., 2013

Example #4: Pharmacological Intervention

Inter-regional Synaptic Coupling

Adaptation and Inter-regional Synaptic Coupling



Schmidt, Diaconescu et al., 2013

Example #4: Pharmacological Intervention



Homework Assignment:
• EEG Analysis:
• ------------
• 1. Download the open source data file 'subject1.bdf' at 

`https://www.fil.ion.ucl.ac.uk/spm/data/eeg_mmn/`and place in a new folder */day6/eeg/data/

• 2. Set your environment using “kcni_setup_paths”

• 3. Main script is “mmn_master_script”

• 4. Use the EEG tutorial code to compare the top 30% of `prediction error (PE) signals` generating 
pseudo-conditions and ERPs of the top 30% and bottom 30% of PE. 

-> Can you model these effects with DCM, and if yes, do you obtain the same connectivity 
parameter estimates?



Peter Bedford, July 2021

Regression dynamic causal 
modelling for fMRI



Linear DCM

‘underlying’ 
connectivity

x1

x4

x2

x3

x5

a12

a34

a41 a23

u

c2c1

BOLD

signals

estimated 
parameters

observation

model


+

single subject, 5 ROIs, 4 experimental inputs

A =
a11 ⋯ a15
⋮ ⋱ ⋮

a51 ⋯ a55

y1

y5

DCM

DCM: Dynamic causal modelling. ROI: region of interest.

Dynamic causal modelling, Friston et al., 2003

C =
c11 ⋯ c14
⋮ ⋱ ⋮

c51 ⋯ c54

dx
dt

= Ax + Cu

fMRI



Linear DCM: state equation

Changes in 
hidden neuronal 

state

connectivity 
between 
regions

hidden 
neuronal 

state

dx
dt

= Ax + Cu

experimental 
input

extrinsic 
‘driving’


influences 



DCM vs rDCM

~10 regions or less

<100 connection strength parameters

hypothesis-based analysis only

DCM ECBOLD

EC: Estimated connectivity parameters



~10 regions or less

<100 connection strength parameters

hypothesis-based analysis only

~100 regions or more

>10000 connection strength parameters

enables exploratory analysis

rDCM ECBOLD

DCM ECBOLD

Regression dynamic causal modeling for fMRI, Frässle et al., 2017

DCM vs rDCM



rDCM ECBOLD

DCM ECBOLD

1. transform BOLD to frequency domain

2. linearize hemodynamic model

3. assume partial independence of connectivity parameters

4. use a Gamma prior for noise precision

Regression dynamic causal modeling for fMRI, Frässle et al., 2017

DCM vs rDCM



DCM to rDCM, step 1: Transforming neural model into frequency domain

Regression dynamic causal modeling for fMRI, Frässle et al., 2017

dx
dt

= Ax + Cu

̂dx
dt

= A ̂x + C ̂u

⇒ iω ̂x = A ̂x + C ̂u
̂dx

dt
= iω ̂xfor FTs:

apply Fourier Transform:

State equation:



Regression dynamic causal modeling for fMRI, Frässle et al., 2017

DCM to rDCM, step 2: Linearizing hemodynamic model

Fixed hemodynamic response function 
(HRF):

h

Convolve  and :h iωx iω ( ̂h ⊗ x) = A ( ̂h ⊗ x) + C ̂h ̂u

iω ̂yB = A ̂yB + C ̂h ̂uLet ̂h ⊗ x = ̂yB

noise-free prediction of the datâyB ≡



Regression dynamic causal modeling for fMRI, Frässle et al., 2017

DCM to rDCM, step 2: Linearizing hemodynamic model

Discretize into N frequency/time points: iω → imΔω = 2πi
m
NT

≈
1
T (e2πi m

N − 1)Use linear approximation to 
exponential:

iω ̂yB = A ̂yB + C ̂h ̂u

Continuous: Discrete:

(e2πi m
N −1) ̂yB

T
= A ̂yB + C ̂h ̂u

m = [0,1,...,N − 1]



Regression dynamic causal modeling for fMRI, Frässle et al., 2017

DCM to rDCM, step 3: Assume partial independence between connectivity parameters

fMRI signal, with noise: yi = yB,i + ϵi, ϵi ∼ 𝒩 (0,σ2
i IN×N)

(e2πi m
N −1) ̂y

T
= A ̂y + C ̂h ̂u + ν

ν = (e2πi m
N − 1

̂ϵ
T )−A ̂ϵwith noise vector:

state equation becomes:

assume partial independence; noise 
precision parameter τi

ν ∼ 𝒩 (ν; 0,τ−1IN×N)



rDCM state equation

Y = Xθ + ν
X = [ ̂y 1, …, ̂y R, ̂h ̂u1, …, ̂h ̂uK]design matrix

HRF * measured signals
HRF * experimental inputs

θr = [ar,1, …, ar,R, cr,1, …, cr,K]parameter vector
endogenous connectivity matrix column  Ar

driving inputs matrix column Cr

noise:Dependent variable:

Yi ≡ (e2πi m

N − 1) ̂yi

T

ν ∼ 𝒩 (ν; 0,τ−1IN×N)

number of regions. number of experimental inputs.R ≡ K ≡



2 methods of implementing sparsity in network:

rDCM sparsity



2 methods of imposing sparsity on connectivity matrix:

a11 0 a13 a14 0
0 a22 0 0 a25
a31 0 a33 a34 a35
a41 0 a43 a44 0
0 a52 a53 0 a55

Â=

“Structural Prior” Method (ECst)

Fix connection strength parameter at zero for 
region pairs with no anatomical connection

1 0 1 1 0
0 1 0 0 1
1 0 1 1 1
1 0 1 1 0
0 1 1 0 1

A=

rDCM

inversion

priors final estimates

rDCM sparsity



2 methods of imposing sparsity on connectivity matrix:

a11 0 a13 a14 0
0 a22 0 0 a25
a31 0 a33 a34 a35
a41 0 a43 a44 0
0 a52 a53 0 a55

Â=

“Structural Prior” Method (ECst)

Fix connection strength parameter at zero for 
region pairs with no anatomical connection

1 0 1 1 0
0 1 0 0 1
1 0 1 1 1
1 0 1 1 0
0 1 1 0 1

A=

rDCM

inversion

priors final estimates

“Sparsity Optimization” Method (ECsp)

‘Find’ probability that each connection is 
present, then prune improbable connections

rDCM

inversion

priors final estimates

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

A=
a11 a12 a13 a14 a14
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

A=

rDCM sparsity



Whole-brain effective connectivity 
from resting-state fMRI 
discriminates between LSD and 
placebo conditions



LSD (Lysergic acid diethylamide) → MDD treatment

Could individual brain 
connectivity predict 
efficacy of LSD as 
antidepressant?

Is brain connectivity 
predictive of 
subjective effects of 
LSD?

Is brain connectivity 
predictive of LSD 
condition vs placebo?

Experiment: 45 participants

pharmacological double-blinded crossover (LSD vs placebo; 4 weeks interval)

Whole-brain (132 ROIs) BOLD data from resting state fMRI

Experimental data provided by Felix Müller, Department of Psychiatry, University of Basel, Basel

Example: Effective connectivity of LSD vs Placebo during resting state



rs-fMRI data

EC train classifier

train classifier

model
accuracy

?rDCM

sp

BOLD

connectivity

(training data)

ML classification 
model

performance

comparison

rDCM: Regression dynamic causal modelling. ML: machine learning.

Regression dynamic causal modeling for resting‐state fMRI, Frässle et al., 2021

Question:

Is effective connectivity predictive of LSD vs placebo conditions?

EC modelrDCM

st

Example: Effective connectivity of LSD vs Placebo during resting state



rDCM for resting-state fMRI: state equation

Y = Xθ + ν
X = [ ̂y 1, …, ̂y R, ̂h ̂u1, …, ̂h ̂uK]design matrix

HRF * measured signals
HRF * experimental inputs

θr = [ar,1, …, ar,R, cr,1, …, cr,K]parameter vector

driving inputs matrix column Cr

noise:Dependent variable:

Yi ≡ (e2πi m

N − 1) ̂yi

T

ν ∼ 𝒩 (ν; 0,τ−1IN×N)

number of regions. number of experimental inputs.R ≡ K ≡

endogenous connectivity matrix column  Ar



Results: Effective Connectivity (structural prior method)

LSD Placebo LSD-Placebo

aij > 0

5006 connections compared | 677 statistically-significantly different connections (13.5%)

aij < 0aij ≡ 1
2 (aij + aji) aLSD

ij > aPLA
ij aLSD

ij < aPLA
ij



Results: Effective Connectivity (sparsity optimization method)

LSD Placebo LSD-Placebo

aij > 0

17424 connections compared | 2845 statistically-significantly different connections (16.3%)

aij < 0 aLSD
ij > aPLA

ij aLSD
ij < aPLA

ijaij ≡ 1
2 (aij + aji)



Connections in top 10 for both

Results: Changes in Effective Connectivity
Top 10 ‘Most-Different’ (by t-statistic) Connections (all)

EC
st

EC
sp

aLSD
ij > aPLA

ijaLSD
ij < aPLA

ijpositive connections

aLSD
ij > aPLA

ij★ negative connections

★

★

★

Connections not in visual areas aLSD
ij < aPLA

ij



Top 10 ‘Most-Different’ (by t-statistic) Connections (self only)

EC
st

EC
sp

aLSD
ij > aPLA

ijaLSD
ij < aPLA

ijpositive connections

negative connections aLSD
ij > aPLA

ij aLSD
ij < aPLA

ij

Connections in top 10 for both

Connections not in visual areas

Results: Changes in Effective Connectivity



Nregions Nconns Nfeats Ntrees

Random Forest with 10-fold cross-
validation

FC 132 17424 8646 8646
ECst 132 17424 4874 4874

ECsp 132 17424 17424 17424

ACC SEN SPE PPV NPV AUC p
FC 0.89 0.92 0.88 0.90 0.93 0.95 2E-04

ECst 0.93 0.96 0.92 0.93 0.96 0.96 2E-04
ECsp 0.91 0.94 0.90 0.91 0.95 0.95 2E-04

Tr
ue

FC LSD PLA
LSD 41 4
PLA 6 39

predicted

ECst LSD PLA
LSD 43 2
PLA 4 41

predicted

Tr
ue

ECsp LSD PLA
LSD 42 3
PLA 5 40

predicted

Tr
ue

BAC
FC 0.90

ECst 0.94
ECsp 0.92

Results: Question 1
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Tutorial:
Dynamic causal modeling for fMRI
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• Inferring on the intentions of others
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Types of model validity

1) Face Validity:
• Model Specification
• Simulation
• Inversion
• Diagnostics

2) Construct Validity:
• VOI Extraction
• Model Specification
• Inversion
• Diagnostics
• Model Selection

3) Predictive Validity

In this tutorial


