
SUMMER SCHOOL 2020
Day 1

Understanding clinical research questions and reproducible science

Afternoon: Best practices and tools for reproducible science
1

Integrative research methods
Panel Discussion

A. Pratap & D. Felsky
Group Panel

Bayesian Models of
Learning and Integration
of Neuroimaging Data

A Diaconescu + Lab
Brain Microcircuit
Simulations of Depression

E. Hay & F. Mazza

Applied ethics in machine
learning and mental health

D. Buchman,L.
Sikstrom & M Maslej

Digital Health and
Population-based data

resources

A. Pratap, J Yu & D.
Felsky

Whole-Brain Modelling
and Neuroimaging

Connectomics

J. Griffiths & E Dickie

Genetics and
transcriptomics

.

S.Tripathy,& D. Felsky

Understanding clinical
research questions and

reproducible science.

S. Hill & E. Dickie
B. Jones & V. Tang

Mon 05/07

Tu 06/07

Wed 07/07

Wed 08/07

Fri 09/07

Mon 12/07

Tues 13/07

Wed 14/07

Summer School Schedule

Today’s Agenda

3

Lecture 1: Welcome and Orientation + Neuroinformatics Across Scales
Erin Dickie + Sean Hill

9:00 am -
10:30 am

Problems and opportunities in the diagnosis and treatment of major depression
Dr Victor Tang & Dr Brett Jones

10:45 am
- 12:15 pm

Workshop 1: Guiding principles for FAIR and open science
Erin Dickie & Sejal Patel

1:00 pm -
2:30 pm

Workshop 2: Tools for Reproducible Science
Erin Dickie & Sejal Patel]

2:45 pm -
4:15 pm

Day 1:
Welcome!

Understanding
clinical research
questions and
reproducible

science

This afternoon

Erin Dickie Ph.D.
Lead - Education and Knowledge Transfer
Krembil Centre for Neuroinformatics, Centre for
Addiction and Mental Health, Toronto, Ontario
Twitter: @ErinWDickie Github: @edickie

Sejal Patel Ph.D.
Post-doctoral Fellow - Whole Person Modeling
Krembil Centre for Neuroinformatics, Centre for
Addiction and Mental Health, Toronto, Ontario
Github: @Sejal24

Guiding
principles and
tools for
reproducible
science

Teaching Assistants for this section

Image Placeholder

Kevin Kadak
Whole Brain Modeling

Lab
KCNI - CAMH

Taha Morshedzadeh
Whole Brain Modeling

Lab
KCNI - CAMH

Kevin Witczak
CAMH Kimel

TIGRlab
Github:

@kimjetwav

Image PlaceholderImage Placeholder

?

Remember - many ways to engage

virtually meet with us
in gather.town

come chat with us in KCNI
Summer School Slack :)

KCNISchool@camh.ca
Tell us how the session went (post session survey):

https://forms.gle/ji18qLMZEZ9L16Ln6

You can always return to the
session and re-watch the vidos
after the session ends

(during sessions)
Use the chat or

the ask question!

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

What is reproducible science?

Fig. 5 How the Turing Way defines reproducible research

Reproducible Neuroinformatics - What

9

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship
is the complete software development environment
and the complete set of instructions which generated
the figures.

Buckheit and Donoho
WaveLab and Reproducible Research, 1995

Reproducible Science - Why

For
Yourself

For your
colleagues For science

Reproducible Neuroinformatics - Why

11

Your number one
collaborator is yourself six
months ago: And they don’t
answer emails

For Science Friends

Think of reproducible science as
“tidy” code and data. By keeping
things tidy , labeled and organized
you create a space where you can
invite guests.

Reproducible science leads to
more meaningful collaborations
where collaborators can review
your code, learn from it, and build
from you work.

Reproducible Science - for science

Tested the reproduction of data analyses in 18 articles on microarray-based gene expression
profiling published in Nature Genetics in 2005–2006.

Ioannidis, John P. A., David B. Allison, Catherine A. Ball, Issa
Coulibaly, Xiangqin Cui, Aedín C. Culhane, Mario Falchi, et al. 2009.
“Repeatability of Published Microarray Gene Expression Analyses.”
Nature Genetics 41 (2): 149–55.

Communicating to your peers

Problem: today’s scientific
papers can fail to
communicate all details of
the methods needed to
reproduce the study.

Reproducible Science - for science

Baker, Monya. 2016.
“1,500 Scientists Lift the
Lid on Reproducibility.”
Nature 533 (7604):
452–54.

Problems and Suggested Solutions

Poldrack, Russell A., Chris I. Baker, Joke Durnez, Krzysztof J. Gorgolewski, Paul M. Matthews, Marcus R. Munafò, Thomas E. Nichols,
Jean-Baptiste Poline, Edward Vul, and Tal Yarkoni. 2017. “Scanning the Horizon: Towards Transparent and Reproducible Neuroimaging
Research.” Nature Reviews. Neuroscience 18 (2): 115–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910649/

Problems Suggested Solutions

Low statistical power (one or many) increasing the amount of available data for analysis

Flexibility and exploration in data analysis pre-registration of methods and analysis plans

Multiple comparisons sharing of both thresholded and un-thresholded result maps (for meta analysis)

Software errors
“As complexity of a software program
increases, the likelihood of undiscovered
bugs quickly reaches certainty”

 avoid the trap of the ‘not invented here’ philosophy: when the problem at hand can
be solved using software tools from a well-established project, these should be
chosen instead of re-implementing the same method in custom code

Insufficient study reporting Because the computer code is often necessary to understand exactly how a data
set has been analysed, releasing the analysis code is particularly useful and should
be standard practice.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910649/

The paper of the future/(is now?)

Towards the [neuroimaging] paper of the future

“All code for data collection and analysis would be stored in a
version-control system and would include software tests to detect
common problems”

“The repository would use a continuous integration system to ensure
that each revision of the code passes appropriate software tests.”

“The entire analysis workflow (including both successful and failed
analyses) would be completely automated in a workflow engine and
packaged in a software container or virtual machine to ensure
computational reproducibility. “

The many bits of a project

Fig. 3 The Turing Way project
illustration by Scriberia. Used
under a CC-BY 4.0 licence.
DOI:
10.5281/zenodo.3332807.¶

https://doi.org/10.5281/zenodo.3332807
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html#reproducible

FAIR data principles
Findable: The first step in (re)using data
is to find them! Descriptive metadata
(information about the data such as
keywords) are essential.

Accessible: Once the user finds the data
and software they need to know how to
access it. Data could be openly available
but it is also possible that authentication
and authorisation procedures are
necessary.

Interoperable: Data needs to be
integrated with other data and
interoperate with applications or
workflows.

Reusable: Data should be well-described
so that they can be used, combined, and
extended in different settings.Fig. 31 The Turing Way project illustration by Scriberia. Used under a CC-BY 4.0

licence. DOI: 10.5281/zenodo.3332807.¶

https://doi.org/10.5281/zenodo.3332807
https://the-turing-way.netlify.app/reproducible-research/rdm/rdm-fair.html#fair-principles

Data management recommendations

0. Organise your project as if you have no memory

1. Raw data is read-only. (i.e. never modify your source data)

2. Name files for both humans and computers to understand

3. Always know where your data comes from

4. Track all the changes the humans or computers make. Use version

control.

Data Naming

Here are some tips for naming files within a research project, which are both human- and
machine-readable [Cow20][Hod15]:

● Name your files consistently
● Keep it short but descriptive
● Avoid special characters or spaces to keep it machine-compatible
● Use capitals or underscores to keep it human-readable
● Use consistent date formatting, for example ISO 8601: YYYY-MM-DD to maintain

default order
● Include a version number when applicable
● Share/establish a naming convention when working with collaborators
● Record a naming convention in your data management plan

[the turing way - https://the-turing-way.netlify.app/project-design/filenaming.html]

https://the-turing-way.netlify.app/afterword/bibliography.html#cowles2019filenaming
https://the-turing-way.netlify.app/afterword/bibliography.html#hodge2015filenaming

Beware the WOMBAT

W aste
O f
M oney
B rains
A nd
T ime

If a data naming standard exists for your data type
- use it
- don’t invent you own

Do not reinvent the wheel

If a (well-maintain) tool or pipeline exists for your
analysis - use it

- don’t recode your own

- Michael Hanke @eknahm,
BrainHack Leipzig 2012

If it exists - use a data standard!

International Neuroinformatics Coordinating Facility (INCF) hosts a
curated list of data standards that are useful our research

-https://www.incf.org/resources/sbps

- Brain Imaging Data Structure (BIDS) for neuroimaging and EEG
- neurodata without borders (NWB) for neurophysiology
- NeuroML for models

https://www.incf.org/resources/sbps

The impact of open data

Milham, Michael P., R.et al. 2018. “Assessment of the Impact of Shared
Brain Imaging Data on the Scientific Literature.” Nature Communications
9 (1): 2818.

Database Cost/
subject

Pheno-
typing

Pheno-
typing

Clinical Popu-
lation

Difficulty No. of
publica-
tions

No. of
scans/
subject

$ Saved

 Minimal Compre
-hensive

Low Mod-
erate

High

FCP $1000 x 308 1 101,003,000

ADHD-200
$2000–
5000

 x x 210 1 526,275,000

NKI-RS $3000 x 188 1 70,065,000

ABIDE
$5000–
10,000

 x x 190 1 995,560,000

CoRR $2000 x 17 2 70,065,000

Modelling Best Practices

These practices and tools
can be difficult to
incorporate into a full
project with multiple
stages of analysis...but they
are especially useful in
teaching

The materials in this course
are examples of
reproducible science tools.

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

Using version control

version control: (‘git’) is a tool
for tracking what changes to a
folder (usually a folder filled
with code) when and by
who..
● Like MS Word’s “track

changes”
○ ...but for code
○ ..and on steroids..

Git and Github - What and Why?

28

Github is a website where everyone shares there
code with themselves, their teams and with the
world.

It has a a lot of useful features for:
● working with teams
● reading other people’s code
● integrating with other platforms

○ continuous integration (CI) to test for bugs
○ Dockerhub

● hosting documentation websites and wiki’s
● releasing versions

 to post questions
for help cloning to
local computer

to download the
complete (old) 2020
school code

scroll down to the readme
for relevant info
(course schedule)

Version Control (git)

Your files Your local
git repo

Github

git status
List what has not been
committed (repo)

git diff
tells you want changes
haven’t been committed
(file)

git init
starts a new repo

git clone
copies a repo from GitHub
or GitLab to your local
computer

pushadd & commit

pullcheckout

Git for your own project demo

Git - make a repo

First thing in the morning git pull

Before coffee break git commit bin/scriptx.py -m “I changed x”

Before going to lunch git commit bin/scripty.py -m “modifying y”

Done adding function foo git commit bin/sciprtx.py -m “now does foo”

Before going home git push

Git - a day in the life

Step 1: build repo on github/gitlab

Step 2:
cd ~/code

git clone http:link/to/git/repo.git

“ Git, the
toothbrush
of science”

Git with friends..

Let go look at the lesson’s repo on
github

- when working with larger
groups - it’s usually better to
put in a little more work to
make sure that your changes
don’t clash with other people’s
changes

- some projects have
“CONTRIBUTING.md” files that
lay down some best practice
steps

- - “fork” the repo
- make a copy under your

own user space
- create a new “branch”

that specific to you
change

- make your changes
inside the “branch”

- when you are done
make a “pull request”
back to the “upstream”
repo

Git submodules - what? and why?

What? - a git “submodule” is link from one git repository to another
repository

- think of the kcni-school-lessons repo as an index of lesson repos
- on github you see the “submodule” as a hyperlink to another git

repo at a specific commit
- on your computer - a submodule looks like a git repo inside another

git repo.

Why? - it can allow you to keep project more modular

- meaning you can use it to link to a common code base that is shared
across multiple projects

- it can help git run faster (for very large projects)

Git submodules - how - for everybody

Get the tutorial scripts (with all the submodules) by typing
git clone --recurse-submodules \
 https://github.com/krembilneuroinformatics/kcni-school-lessons.git

Get the updated tutorial scripts (with all the submodules) after
cloning
cd kcni-school-lessons
git pull --recurse-submodules

Git submodules - how - for everybody

But what …
you might find, when navigating the kcni-school-lesson that the
submodules folders are empty...this is because the submodule
needs to he “updated”

cd kcni-school-lessons
cd day1
git submodule init
git submodule update example-python-repo

Git submodules - to create your own

A good tutorial for everything:

https://git-scm.com/book/en/v2/Git-Tools-Submodules

For example here’s some code to add SPM12 toolbox code into
kcni-school-lesson’s day 6 code.
Get add a submodule to your repo
cd kcni-school-lessons/day6/toolboxes
git submodule add https:/github.com/spm/spm12.git

Get updated the submodule content to the newest commit
cd kcni-school-lessons
git submodule update --remote spm12

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

Containers - Why

40

my_fancy_day1_script.R

library(tidyverse)
“version”

library(rms)
“version”

plink
“version”

R/ “version” bin/ libs/

Operating System

Every box here is
something that could be
installed differently (or
not at all) by the next
user

This will cause
my_fancy_day1_script.R
to:
1) crash/not work at all
2) produce

unexpected/
different results

3) maybe still work?

Reproducible Neuroinformatics - Solution

41

my_fancy_day1_script.R

library(tidyverse)
“version”

library(rms)
“version”

plink
“version”

R/ “version” bin/ libs/

Operating System

Share on Github

Share on
Dockerhub

Containers - what and why?

42

Docker - is a tool for sharing software + the
dependencies
● the install instructions are stored script called

“Dockerfile”
● it’s like a virtual machine

○ without a display
○ that takes up a little less disk space
○ that can be installed in one line

Some Docker vocabulary
● image: your install of the software
● container: one instance of that software that

is usually still running.

Dockerhub is a website that hosts docker images.
So that anyone - anywhere is the world can run it!

Containers for scaling up analysis

Develop and test on your
local computer

Deploy software on a high
performance cluster

Containers for medical science

There is some
speculation that
(secure) cloud
computing will
become
important of
health research

Develop and test on your
local computer

Deploy in the cloud

How to run our code

Run on your Local
Computer using Docker

• will use less internet
bandwidth while you
watch the stream

• you will have a copy
of the files locally

• requires installation
of Docker Desktop

Run on the web with
Binder

• no local installation
needed

• may take some time
to boot up

• limited resources for
the computer

Run on SciNet using a
guest account

• no local installation
needed

• a few extra set-up
steps needed

• good compute
resources

To follow along

To interact with the school lesson code on your local
computer you will need:

A terminal for pulling/cloning data
from github.

-mac os terminal or WSL work

- On windows -
gitbash is an
optionhttps://www.docker.com/products/docker-desktop

- installs on window, mac or linux

Also useful, but
not necessary:

https://www.docker.com/products/docker-desktop

Step 1: Install Docker Desktop

47

Installing Docker should not be harder than
installing any other program on your computer.
1

Download link and install instructions at:
https://www.docker.com/products/docker-desktop.

To check your install open up a terminal (in windows
this is Powershell or WSL) and type:

docker run hello-world

https://www.docker.com/products/docker-desktop

Docker Desktop install gotcha’s

1. On Windows - you need to enable Hyper-V or WSL virtualization
2. You also need “Share the drive” with docker.

a. Settings->Resources->File Sharing

If this fails! Fear not - we have a plan!

49

If you can’t install Docker on your local computer (because you
probably don’t have enough administrative rights - or you don’t
have enough space on you home computer) We have a plan!

You can run the software on the binder instance or SciNet teach
cluster!

Instructions are available at: https://github.com/edickie/kcni-school-lessons

Step 2: download and run the KCNIschool docker

50

In the same terminal window where you typed “docker pull hello-world”
now type:

git clone --recurse-submodules \
 https://github.com/krembilneuroinformatics/kcni-school-lessons.git
cd kcni-school-lessons
docker compose up rstudio

Then you should see lots of things happening! What is happening? -
docker is downloading ~ 5G of software for our lessons into an “image”

Copy and paste this line from:
https://github.com/edickie/kcni-school-lessons/tree/master/envs/README.md

Step 3: open rstudio in browser

51

After typing
cd kcni-school-lessons
docker compose up rstudio

You will finally see the

message [services.d] done.
point you browser to:
http://localhost:8787/

http://localhost:8787/

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

R Programming
R is a language and environment for statistical computing and graphics
for data visualization

- Similar to S programming language and environment

R GUI and RStudio

Old way of coding in R New way of coding R

Rstudio Interface and Demo

R Script or code editor

R Console

R Environment

File and Graphical
Output

Tidyverse (dplyr package) vs Base R

● Here are few examples
between base R function
and the equivalent
functions in the dplyr
package found within
tidyverse

● Note: through the
different workshops you
will encounter the use of
both tidyverse and base R
coding style

Base R vs Tidyverse

Long debate in the R community of which way of R coding is better

● Generally Tidyverse is easier to learn then Base R
● Tidyverse follow some logical flow when coding which is easier to understand

R script vs R Notebook -

Two main ways to write and execute code
● R script file can be used to write your code and the file extension is .R

- code and output are on two different panels

● However using R Notebooks is becoming used more often
- The output of the code is below each code chunk
- Documenting the code and reporting can be done beside the code using text

elements to get a fully formatted
- Can use other programing language such as Bash or Python
- Easy to share with collaborator
- Work will with version control system
- R Notebook is way to work with R Markdown files

R Markdown

R Markdown has a file extension .Rmd

● Provides an authoring framework for data science
● Fully formatted document into PDF, HTML or Word
● Combination of:

- Written in plain text
- Special characters for text formatting
- R code within it to produce outputs such as table and plots

● Generate high quality reports that can be shared with an audience

R Script Demo

R Notebook Example + Demo

R Notebook Example + Demo

R for Data Science

https://r4ds.had.co.nz/index.html

R Cheatsheets!

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

Jupyter notebooks - let’s open the
one in our example-python-repo

docker compose up jupyter

Jupyter file browser interface

Running Notebook in green

File Tree

Jupyter file browser interface

add new
cell Run current cell

markdown
cell

python
cell

Now let’s check out the same
notebook on google colaboratory
(colab)

Instructions at:
https://github.com/krembilneuroinformatics/kcni-school-lessons/tree/master/day1

Recap: opening the notebook

The colab interface (README.md)

add new cell

Run current cell python cell

you can collapse
(hide) cells

markdown cell

colab strengths and caveates

strengths

- more power, more diskspace
and more RAM than binder

- easy to use
- can be left running for days (no

timeouts, unlike binder)
- can connect to google drive for

more cloud storage space.

caveats

to remember for this course

- each colab notebook is and
island

- it is not aware of the other data
scripts or notebooks line same
folder

- You always start with the same
(cleanish) linux/python-3.7.1
environment

- so you need to install all other
software inside your notebook

- the current env is old so some
newer packages may not work

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

Binder - repros runable on the web

https://mybinder.org/v2/gh/<user>/<repository>/<branch>[other-stuff]

reads from
repo configure
installation

copies repo

keeps copy for
the next user

[other-stuff] in the web address will
determine what interface you see

Binder how - the files

For python (jupyter)

● requirements.txt : tells
binder what python packages to
install

● runtime.txt : tells binder what
version of python to install

see example in:

day1/example-python-repo

For and R (with rstudio)

● runtime.txt: tells binder what
version of R to use

● install.R: tells binder what R
packages to install

see example in:

day1/example-r-repo

Binder - how - the URL’s

The standard format is:

http://mybinder.org/v2/gh/<github-user>/<github-repo>/<branch>

For this repo this is:

• http://mybinder.org/v2/gh/krembilneuroinformatics/example-python-repo/HEAD

But if directly to one particular python notebook. You could add the filepath to the end
?filepath=<filepath>

• Example:

https://mybinder.org/v2/gh/krembilneuroinformatics/example-python-repo.git/HEAD?filepath=exa
mple_notebook.ipynb

For the RStudio environment, we must add the following at the end of the URL: ?urlpath=rstudio

• Example:
http://mybinder.org/v2/gh/krembilneuroinformatics/example-r-repo/HEAD?urlpath=rstudio

Help at mybinder.org

http://mybinder.org/v2/gh/krembilneuroinformatics/example-python-repo/HEAD
https://mybinder.org/v2/gh/krembilneuroinformatics/example-python-repo.git/HEAD?filepath=example_notebook.ipynb
https://mybinder.org/v2/gh/krembilneuroinformatics/example-python-repo.git/HEAD?filepath=example_notebook.ipynb
http://mybinder.org/v2/gh/krembilneuroinformatics/example-r-repo/HEAD?urlpath=rstudio

let’s look at two example repo’s in
the kcni-school-lessons/day1

Outline for this afternoon

Why reproducible science?

The things you need to know to get through this course:

Versioning and publishing code (github)

Versioning and publishing software (docker)

R with Rmarkdown (walk through)

Python in ipython notebooks (walk through)

-also google colab

The fancy bits:

building your own binder environments

building your own containers (docker & singularity)

Step 1: write a Dockerfile

In an empty folder (new github repo)
Create a file named:

Dockerfile
Everything else in this folder will be copied inside
the docker image.
The Dockerfile contains the instructions for
software installation. Commands are:

• FROM (at top line): points to another Docker
image to start from

• RUN: will run an installation command)
• -run is followed by shell install

commands
• can add && to package lines into the

same “layer”
• ENTRYPOINT: will determine one command

that is run “by default”

FROM <base-image>

stuff to install
RUN <installation command>

more stuff (layer 2)
RUN <installation line1>

&& <installation line2>

Browse https://hub.docker.com/ &
kcni-school-lessons/envs
for examples

https://hub.docker.com/

Step 1: write a Dockerfile

In an empty folder (new github repo)
Create a file named:

Dockerfile
Everything else in this folder will be copied inside
the docker image.
The Dockerfile contains the instructions for
software installation. Commands are:

• FROM (at top line): points to another Docker
image to start from

• RUN: will run an installation command)
• -run is followed by shell install

commands
• ENV: can set environment variables
• ENTRYPOINT: will determine one command

that is run “by default”

FROM rocker/verse:4.1.0

adding plotting packages to from day 1 demo

RUN install2.r --error \

 --deps TRUE \

 ggrepel \

 ggthemes \

 here

adding data grabbing packages

RUN apt-get update -qq \

&& apt-get -y --no-install-recommends \

install wget curl git

Browse https://hub.docker.com/ &
kcni-school-lessons/envs
for examples

https://hub.docker.com/

Building your docker image

Use “docker build” to build and test your image on your local computer.
Note “-t” is for tag - or the name you will give to your docker the last
argument is the folder

cd my_docker_folder/
docker build -t my_new_docker ./

https://hub.docker.com/

You can connect you github repo
to dockerhub and have dockerhub
re-build your container everytime
you make a push to your repo

https://hub.docker.com/

Running docker images

To run your docker:
docker run [options] <dockerhub_user>/<image>:<version>
example: docker run [options] edickie/rstudio-school:latest

Important options when you run and image:
• --publish,-p : allows port forwarding from the inside of the

docker to the outside
• we need this to connect rstudio or the inside of the docker to your

computer's browser

• --volume, -v: use this to connect data outside the docker
readable/writable by the docker software.

• Docker can only “see” data that is connected to it (not everything on your
computer)

Running the kcnischool-rstudio image

83

The full command to run the KCNI rstudio image is:

docker run --rm -it \
 -e DISABLE_AUTH=true \
 -p 127.0.0.1:8787:8787 \
 -v <path/to/your/data>:/home/rstudio/kcni-school-lessons \
 edickie/kcnischool-rstudio:latest

where - <path/to/my/data> is the name of the folder on your computer
where you cloned the kcni-school-lessons repo.

Copy and paste this line from: https://github.com/edickie/kcni-school-envs

https://github.com/edickie/kcni-school-envs

docker-compose files save memory

We put a “docker-compose.yml” file at
the base of the kcni-school-lessons repo.
This file contains defaults of the docker
options - so to run the docker you type

docker compose up rstudio

Later in the week we will start jupyter
with:

docker compose up jupyter

version: '3'

services:
 rstudio:
 image: edickie/kcnischool-rstudio
 ports:
 - 8787:8787
 volumes:
 - ./:/home/rstudio/kcni-school-data
 environment:
 - DISABLE_AUTH=true

 jupyter:
 image: edickie/kcnischool-jupyter
 ports:
 - 8888:8888
 volumes:
 - ./:/home/neuro/kcni-school-data

Docker vs Singularity

Pro Cons

Docker ● Strong and building dev community
● can be pushed and pulled to dockerhub
● Works on any system (Windows, Mac, Linux)
● “Layers” decrease the hard disk space

Needs “root” access

Singularity Does not need “root” access.

Can converted from Docker

● Smaller dev community
● Singularity hub exists, but is less

used
● Only works on Linux

Docker vs Singularity
 take home...
 - we write a Docker spec
 - we run singularity containers on High performance
computers and shared servers (like the CAMH SCC or
SciNet)

Translating Docker Usage to Singularity
Docker Singularity

Running Docker run -it --rm Singularity run

Mounting or binding a path -v, --volume -B, --bind

Attaching the “workdir” -w, --workdir -W

Port forwarding -p, --publish N/A

Removing the outside environment N/A -e, --cleanenv

Change the mount to $HOME N/A -H, --home

Building a singularity container from docker
Direct from dockerhub to singularity
ssh <username>@teach.scinet.utoronto.ca

note - in this example I am adding the new container to my $SCRATCH folder
mkdir $SCRATCH/test_sing_img

singularity build <output-image>
docker://<dockerhubuser>/<dockername>:<version>
singularity build singularity build \

edickie_kcnischool-jupyter_latest-2021-07-02.sif \
docker://edickie/kcnischool-jupyter:latest

A note about “latest”

Most dockers will allow you to download the latest version of their software by typing “latest” instead of a
version number

Problem - for reporting and debugging...you need the version number

So - for a real analysis - make sure to build a specific version and put the version number in the filename of
the singularity image.

?

Remember - many ways to engage

virtually meet with us
in gather.town

come chat with us in KCNI
Summer School Slack :)

KCNISchool@camh.ca
Tell us how the session went (post session survey):

https://forms.gle/ji18qLMZEZ9L16Ln6

You can always return to the
session and re-watch the vidos
after the session ends

(during sessions)
Use the chat or

the ask question!

Reproducibility crisis literature

7. Ioannidis JPA Why most published research findings are false. PLoS Med. 2, e124 (2005).
This landmark paper outlines the ways in which common practices can lead to inflated
levels of false positives.

8. Simmons JP, Nelson LD & Simonsohn U. False-positive psychology: undisclosed flexibility
in data collection and analysis allows presenting anything as significant. Psychol. Sci 22,
1359–1366 (2011). This paper highlights the impact of common ‘questionable research
practices’ on study outcomes and proposes a set of guidelines to prevent false-positive
findings. [PubMed: 22006061]

9. Gelman A. & Loken E. The statistical crisis in science. American Scientist 102, 40 (2014).

10. Ioannidis JPA, Fanelli D, Dunne DD & Goodman SN Meta-research: evaluation and
improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).

11. Collins FS & Tabak LA Policy: NIH plans to enhance reproducibility. Nature 505, 612–613
(2014). [PubMed: 24482835]

