4 Homeostasis

4.1 Synaptic Normalisation

(Video 4.1) Besides STDP, there exist forms of synaptic plasticity that aim at restoring or maintaining
a certain activity level in a homeostatic manner. For instance, through homeostatic plasticity, an overly
active neuron may weaken its excitatory inputs or an overly silent neuron may strengthen its excitatory
inputs. The effect of homeostasis on the activity of a neuron or network of neurons depends strongly on
its timescale. Some forms of homeostatic plasticity rescale synapses over hour- or day-long timescales in a
multiplicative manner, as shown in rodents after growth or shrinkage of synaptic sizes during experience-
dependent synaptic plasticity [1,)2]. We refer to this slow homeostatic plasticity as “synaptic scaling”.
On the other hand, there is also fast synaptic homeostasis [3], which is able to keep runaway excitation
under control [4]. The fast synaptic homeostatic plasticity is most likely heterosynaptic, meaning that the
change in one synaptic weight depends on the collective dynamics or states of synapses that are connected
to the same postsynaptic target. We call the fast homeostatic plasticity “synaptic normalisation”. Until
more data becomes available, we assume that synaptic normalisation acts multiplicatively [5], like synaptic
scaling. The major advantage of multiplicative synaptic normalisation is that the proportional difference
between the smaller and larger weights is conserved. Multiplicative synaptic normalisation therefore does
not erase pre-existing memories if it is implemented in a network of neurons. An example of multiplicative
synaptic normalisation is the following:
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Where j and k refer to each synapse onto the neuron, and N is the total number of synapses onto
the neuron. The parameter Wi is the value of the total allowed weight onto the neuron, which can
be assumed to be flexible over time but we here keep fixed for simplicity. Let us say we wish to have a
normalised weight at timestep ¢ + 1 in the simulation. The weight w;, then is the weight just before a
normalisation event. After applying equation (20), we obtain the weight just after normalisation, w; 441,
for the timestep ¢ + 1. We assume in this case that normalisation events occur periodically, for instance
once every second in simulated time.
One can easily see from the equation above that the weight is scaled up or down, depending on whether
the sum of the weights is below or above the target value Wio. Each individual weight w; of course
contributes to that sum. However, there is one problem with this equation: it permits instantaneous
change of any size to a single weight, which may be very large if the weight is far removed from its target
value after scaling. One could argue that such a large instantaneous change is not very realistic in a
biological neuron, where a given synapse cannot undergo arbitrarily large changes in a small timeframe.
We therefore make a small modification, adding a parameter nsn that represents the proportion of
change from the weight prior to scaling. In other words, for ngn the weight will still move towards its
value dictated by complete scaling, but will actually only change by for example 20 percent at every
scaling event. By modifying the equation above, we obtain
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The synaptic normalisation rate ngn can be set from any value between 0 and 1, where 1 results in
reinstating Wit precisely at each normalisation, equation 19. For our model neuron, let us use ngn =
0.2. For practicality, you can implement the normalisation in the neuron simulation to happen every
few seconds, depending on how long you simulate your neuron. Synaptic normalisation is also synapse-
type specific, occurring separately for all excitatory and all inhibitory weights. Provide the neuron with
excitatory inputs from two groups of each 50 spike trains with spike correlations ¢=0.1 for group 1 and



¢ = 0.2 for group 2, as in the previous section, with STDP, and endow all excitatory synapses with
normalisation. Start the weights at 0.1, and use Wy, = 3. Also include 30 inhibitory Poisson inputs,
with w; = 1.0 and firing rate 10 Hz, but without STDP and normalisation, for simplicity. Normalise
the excitatory synapses every second, using equation (21). Run a simulation for 30 seconds. What is
happening to the firing rate of the neuron? Is there still competition between the weights of the two
input groups? How do the weight distributions of the two groups look at the end of the simulation?
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Figure 1: A LIF neuron with two excitatory input groups with STDP and synaptic normalisation in
its synapses. The normalisation is applied once every second here. Top left: The LIF neuron is more
depolarised over time. Top right: Evolution of the synaptic weights from both input groups. The thin
lines show the individual weights, the thick lines the mean weight of the corresponding group. Bottom:
The histograms of the weights from each group at the end of the simulation are shown.
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