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3.2 Correlated Spike Trains

(Video 3.2) When correlations between spike trains are nonzero, STDP can create additional competition
between groups of synaptic inputs. Let us first see how we can implement such correlations in spike
times. There are various ways to create correlations between spike trains, while maintaining Poisson-like
statistics within the spike trains themselves. For example, here we are going to create Poisson spike
trains that have instantaneous and exponential correlations with each other. We discuss one method, for
creating such correlations, which has been described by Brette and colleagues [1] (Method II).

Consider a Poisson spike train Ssource with firing rate rsource. One way to create another spike train
that has nonzero spike-time correlations with Ssource is to simply copy spike times from Ssource to the
new spike train, which we call Snew. If the spikes are copied with probability p, then the firing rate of
any new spike train will be p× rsource. More generally,

rnew =

M∑
k=1

pkrk, (1)

for M different source spike trains. In this example, we just stick to one source spike train, from which
we create multiple new spike trains. If p = 1, Snew is simply identical to Ssource. However according to
equation 14, for any p < 1, thinning of a Poisson spike train will result in rnew < rsource. What if we want
the spike trains to have the same or higher firing rates? In order to compensate for the loss of spikes, the
firing rate can be increased to reach rtarget by adding additional spikes. This is done by superimposing
another Poisson spike train Snoise onto Snew, with firing rate rnoise = rtarget − p× rsource. If this process
is repeated independently for a number of Snew with the same p, Ssource, and independent Snoise for each
spike train, one obtains a group of correlated spike trains that each fire with Poisson statistics and firing
rate rtarget. Now, what are the correlations between such spike trains?

The cross-covariance between any two spike trains Si and Sj is

CCV F (s) = 〈Si(t)Sj(t+ s)〉 − 〈Si(t)〉〈Sj(t)〉 (2)

The angular brackets denote an average over time. This function is 0 for two independent Poisson
spike trains, and is rδ(s) for two identical Poisson spike trains with firing rate r (this is also called the
autocovariance).

The cross-covariance function between two new spike trains generated from the same source spike
train by the thinning method described above, is

CCV F (s) = p2rδ(s) (3)

with r = rsource = rtarget. The area under the cross-covariance function, p2r , normalised by the firing
rate r, is the correlation c. We see here that c = p2. Therefore, if we choose p =

√
c, the correlations

between the spike trains will be c. The method described above generates instantaneous correlations
between spike trains. You can also make exponential cross-covariance between spike trains. In order to
do so, you can shift the spikes randomly after copying them from Ssource. Randomly shifting the spikes
does not change the properties of single spike trains: they remain Poisson and their firing rate does not
change. Choose the random shift from an exponential probability density P (x) for every spike.

P (x) =
1

τc
e−

x
τc (4)

In this case, the cross-covariance function is a convolution of the probability density function:

CCV F (s) =

∫
P (x)P (x+ s)ds =

1

2τc
e−

|s|
τc (5)
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We will refer to this type of correlation as exponential correlation. The variable τc controls the width
of the correlation. First let us make groups of spike trains that have instantaneous correlations, without
random spike time shifting. Create a group of 10 instantaneously correlated spike trains with c = 0.1,
and a group of 10 instantaneously correlated spike trains with c = 0.1 and Show the cross-correlogram
(the cross-correlation histogram over different time lags) for each group; the correlation structure should
be visible there. Within groups, you should see a large peak at zero lag, which should be absent when
taking cross-correlations between groups.

Now apply exponential cross-correlations, by using τc = 20 ms. How has the cross-correlogram
changed? You should now see an exponential-like decay from both sides of the peak at lag zero.

In the next unit, we will apply these correlated spike trains to the neuron model with STDP.

Figure 1: An example of a cross-correlogram between two 10 Hz Poisson spike trains of length 15 seconds.
The spike trains are correlated with c = 0.2, and spike correlation jitter τc = 20 ms. Spikes are binned in
5 ms bins. The vertical dotted line indicates the zero lag point. Although the spike correlation is jittered
and not instantaneous, a peak can still be seen at zero lag.

References

1. R. Brette, “Generation of correlated spike trains.,” Neural computation, vol. 21, pp. 188–215, jan
2008.


