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3 Spike-Timing Dependent Plasticity (STDP)

3.1 STDP

(Video 3.1) Now we shall implement some long-term plasticity. Spike-Timing dependent Plasticity
(STDP) is a type of neuronal activity-dependent synaptic plasticity, in which the strength of a synapse
increases or decreases depending on the time difference between a spike from the presynaptic and a spike
from the postsynaptic neuron (from now on we refer to these spikes as pre-spikes and post-spikes, respec-
tively). While different subtypes of STDP can be found in the literature [1], the most widely observed
and discussed variety is “Hebbian” or asymmetric STDP, which entails long-term potentiation (LTP)
after a pre-post spike pair, and long-term depression (LTD) of the synaptic weight after a post-pre spike
pair. Excitatory synapses in the hippocampus and cortex are subject to LTP and LTD via Hebbian
STDP [2,3].

Figure 1: The STDP “window”. Left curve, LTP. Right curve, LTD. The value ∆t here is the time
difference pre-spike - post-spike. When reading literature, keep in mind that some authors switch the
sign of ∆t.

The dependence on the difference in spike timing can be modeled by an exponentially decaying shape
(Fig. 1). The change in the excitatory synaptic strength (weight) we therefore obeys:

∆we =


ALTP exp( ∆t

τLTP
) ∀∆t < 0

ALTD exp(− ∆t
τLTD

) ∀∆t > 0

0 ∀∆t = 0

(1)

Fig. 1 uses τLTP = 17 ms, ALTP = 1.0, τLTD = 34 ms, and ALTD = - 0.5. These values, leading
to a perfect compensation of LTP by LTD in terms of window area, are frequently used, though other
values are possible. There are two major ways to numerically implement STDP in models: all-to-all and
nearest-neighbour. The names refer to whether every pre-spike is matched to every post-spike, or only
neighbouring spikes are matched, for example a pre-spike is matched to the closest post-spikes only. In
this course, use the nearest-neighbour implementation of STDP. This means that only the spike time
difference between a pre-spike and its closest post-spike (and vice-versa) is implemented. You can do this
using a buffer variable that stores the time of the last spike.
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Using the single LIF neuron model from unit 1.4 (without refractory period or SRA), leave out the
inhibitory inputs for simplicity, or set their synaptic weight to zero. Reduce the number of excitatory
inputs to only 2 and apply the STDP rule, as shown in the figure and the equations above, in these
two synapses. Importantly, set ALTP to 0.05 and ALTD to -0.025, such that the change in weight is slow
enough for us to see the evolution of the weights. Note also that if the initial weight in combination
with the input firing rate and the number of inputs is too weak, there will be no post-spikes. Without
post-spikes, STDP is not activated and the weight will remain unchanged, so in this model the syanptic
drive must be strong from the start of the simulation to see any effect of STDP. Here, use an initial value
of we 1 for each synapse, and apply two Poisson inputs with firing rate 5 Hz. Plot the value of the weight
changing over time.

You should now see that the weights are growing in an unlimited fashion. As a result of the growing
weight, the postsynaptic neuron will demonstrate an increasing firing rate. This problem is dealt with
in later units, for now just put a maximum weight value wmax = 6, above which the weight cannot
increase. Uncontrolled growth of synaptic weights is a property of pure additive STDP models in excita-
tory synapses: since the pre-post spike combination is related to potentiation, STDP rewards causality
in the case of an excitatory synapse. The increased excitatory weight then enhances the probability that
the pre-spike causes a post-spike, and hence a positive feedback loop is created. Therefore, the weight
will mostly undergo LTP and little LTD, despite the integral of the STDP window being 0. Possible
mechanisms that the brain employs to limit this positive feedback have been frequently addressed in the
last decade in modeling studies concerned with STDP.

Now add another Poisson input with an excitatory synapse with STDP, and set the firing rate of this
input to be higher, 8 Hz. You now have two inputs with STDP, one with a higher and one with a lower
firing rate (5 and 8 Hz). What do you see in the weights? If it works well, the weight from the 8 Hz
input should “win the race”.

Figure 2: A LIF neuron with Poisson inputs and STDP in two excitatory input synapses with different
firing rates (5 and 8 Hz). Left: The neuron is getting increasingly depolarised over time, resulting in
more and more output spikes. Right: The cause of the increase in spiking is the growth in excitatory
synaptic weights. Importantly, the synaptic weight of the strongly firing input (8 Hz) increases faster
than that of the more weakly firing input (5 Hz).
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