Advanced diffusion methods – acquisition and analysis

Multiple compartment models and multiple fiber reconstruction algorithms

High b values, Diffusion spectrum imaging, QBall imaging....etc

Clinical Applications:

Diffuse axonal injury
Neuro-degenerative disease
Demyelination disorders
Pre-surgical mapping - Neurosurgery
Brain development and developmental disorders
Diagnosis and assessment of severity of injury
Neuroplasticity

Applications in:

Glaucoma, Blindness, Multiple Sclerosis, Alzheimer's Disease, Stroke, Trauma, Tumor, Epilepsy, Language & reading, Movement disorders

Pre-surgical mapping

Mukherjee et al. AJNR 2009

Clinical applications- Examples Brain development

Normal development – developmental disorders

6m

T₁ weighted images Anatomy

DTI – Fractional Anisotropy WM Organization

High-b_Q-space Probability image WM Integrity

12y

22y

Early Diagnosis – Normal development

4.8
4.6
4.4
4.2
4.3.8
3.6
3.4
3.2
0 5 10 15 20 25
X (age)

Anterior limb internal capsule - Left

Posterior limb internal capsule - Left

Early Diagnosis – Autism

Increased restriction in some areas in the brain correlating with increased brain volume during the first two years of life

Ben Bashat et al., NeuroImage, 2007 Weinstein et al., HumanBrain Mapping, 2011

Fetal - MRI

Corpus callosum

Corticospinal tract

Preterm & term infants

> To study integrity in premature infants in order to predict neurological outcome

➤ To assess brain diffusivity in term infants with hypoxic ischemic encephalitis:

Structural connectivity – brain development

Emily L. Dennis, BA; Paul M. Thompson, Dialogues Clin Neurosci. 2013.

Structural connectivity – Parkinson Disease (PD)

^{*} p=0.0001 – corrected for multiple comparisons

Structural information Conventional methods

Vascular imaging
DSC / DCE / ALS
MRA / MRV

Structural and connectivity information
1994- Diffusion Tensor

Imaging (DTI)

Structural information MR Electrography

Metabolic information Spectroscopy

MR Vascular Imaging

Large blood vessels

Time of flight

Phase contrast (PC)

MR Vascular Imaging

Large blood vessels

Tissue perfusion

Time of flight

Dynamic Contrast Enhancement (DCE)

Dynamic Susceptibility Contrast (DSC)

CBV CBF TTP MTT Area/Height

Phase contrast (PC)

MR Vascular Parameters

Cerebral blood volume (CBV) Plasma volume (Vp)

Mean transient time (MTT) Bolus arrival time (BAT)

Cerebral blood flow (CBF)

Blood brain barrier (BBB) integrity

K^{trans}=volume transfer constant Kep=interstitium-to-plasma rate constant

Clinical applications

Angiogenesis

Stenosis and occlusion

Abnormal flow

Patrick Turski, Neurovascular Imaging 2016

Clinical applications

Stroke

Vascular disorders

Carotid stenosis

Aneurism

Vascular occlusion – stenosis

Brain tumors

Pre-surgical mapping - Neurosurgery

Bleeding

Hypoxic ischemic injury

Moya-moya

Epilepsy

Neuro Vascular coupling

Brain tumors

Non enhancing lesion

T1 +Gd T2W

CBV map

rCBV=5.17

rCBV> 1.75 high grade tumor

Angiogenesis in high grade brain tumors

Routinely used in clinical practice

Stroke

65 y.o. woman with acute ischemic stroke

Pre-surgical mapping – stereotactic guided

Stereotactic biopsy: Correlations between MR and histopathology findings

Hyper perfused

Moya Moya syndrome

Puff of smoke - もやもや (moyamoya) in Japanese

Moya Moya syndrome

Puff of smoke - もやもや (moyamoya) in Japanese

Moya Moya – quantitative imaging

Quantitative imaging: segmentation methods

Segmentation and classification

Segmentation and classification

Differentiation between treatment related changes and progressive disease

Artzi M & Ben Bashat ISMRM, 2015

Summary

MRI always within the context of clinical and imaging parameters

Summary

>> Various parameters - microstructural properties of the tissue

>> MRI –Multi parametric (acquisition and analysis)

>> A gap between what can be done and what is actually used in clinical setting

Summary

- >> A specific and tailored protocol
- >> A need for Computer Aided Diagnostic (CAD) tools
- >> Interdisciplinary collaboration between physicians, physicists, computer science
- >> A shift toward quantitative MRI