
Advanced Data Management

Thomas Heinis

Some Data Management History…

2

SDSS

LHC ATLAS

Investments

Accounts

Customers

The Database
What about…
Reliability?
Security?
Consistency?
Response time?
Scalability?

Relational Databases
• Structured, schema-based organization of data
• Data decomposed into tables, ex. customer data:

• SQL - General-purpose query language
• Join tables to retrieve all data: e.g., SELECT * FROM

Customer, City WHERE City.City = Customer.City

• Focused on strong consistency (ACID)
3

Customer

Name Date City

Dustin 12.1.1971 London

Jack 8.19.1965 Leicester

City

City Country

London UK

Leicester UK

Transactions – Data Integrity
Why Concurrent Access to Data must be managed?
John and Jane withdraw $50 and $100 from a common
account…

Initial balance $300. Final balance=?

It depends…

Need to order operations è transactions!

John:
1. get balance
2. if balance > $50
3. balance = balance - $50
4. update balance

Jane:
1. get balance
2. if balance > $100
3. balance = balance - $100
4. update balance

Indexing – Efficient Data Retrieval
• How can we answer the query: “Find the

account with the balance of 920.-” efficient?

• One approach is to scan the entire customer
table, check every customer, return the one
with balance = 920 … very slow for large
databases

Example Index (B-Tree)

Root

80
0

90
0

95
0

30 10
0

3 5 11 30 35 10
0

10
1

11
0

85
0

87
0

92
0

93
0

94
0

96
0

98
0

NOSQL DATABASES

7

Disk

Memory

Processor

Database Systems

Database System

New applications,
more requirements!

Scientific

Online Transactions

Web Apps

Business Intelligence

Rapidly changing hardware,
new performance hurdles!

Today

Relational Databases: One Size
Does Not Fit All…
New applications challenge relational
databases:
1. Strong consistency (ACID) limits scalability
2. Schema evolution is challenging
3. Little optimization for novel hardware
4. Cumbersome language
5. Limited data types

9

NoSQL
“Not Only SQL” or “Not Relational”.
Six key features:

1. Scale horizontally “simple operations”
2. Replicate/distribute data over many servers
3. Simple call level interface (contrast w/ SQL)
4. Weaker concurrency model than ACID
5. Efficient use of distributed indexes and main

memory
6. Flexible schema

10

Key-value Stores
• Operate on key-value pairs
• Single key to store (or retrieve) data value
• Think “file system” more than “database”
• Consistent hashing (DHT)
• Only primary index: lookup by key
• No secondary indexes

11

Key-Value Store – Basic Idea
• No query language!
• API with simple operations:

– lookup(key) ® value
– lookup(key range) ® values
– getNext ® value
– insert(key, value)
– delete(key)

• Each row has timestamp
• No multi-key transactions

12

key value
k1 v1
k2 v2
k3 v3
k4 v4

Table T:

keys are sorted

Document Stores
• A "document" = a pointerless object = e.g.

JSON = nested or not = schema-less

• In addition to KV stores, may have secondary
indexes

• SimpleDB, CouchDB, MongoDB, Terrastore

• Scalability:
– Replication (e.g. SimpleDB, CounchDB – means entire db is

replicated),

– Sharding (MongoDB);

– Both

13

Document Store (MongoDB)

14

> db.user.insert({
first: "John",
last : "Doe",
age: 39

})

> db.user.find ({"first" : "John”})
{

"_id" : ObjectId("51…"),
"first" : "John",
"last" : "Doe",
"age" : 39

}

> db.user.update(
{"_id" : ObjectId("51…")},
{

$set: {
age: 40,
salary: 7000}

}
)

> db.user.remove({
"first": /^J/

})

Scalable Relational Systems
(NewSQL)
• Means relational databases that offer

sharding
• Key difference to NoSQL:

– NoSQL difficult or impossible to perform large-scope
operations and transactions

– NewSQL systems do not preclude these operations, but
users pay a price only when they need them.

• MySQL Cluster, VoltDB, Clusterix, ScaleDB,
Megastore (the new BigTable)

• Many more NewSQL systems coming online…
15

Scalable Data Processing
• Parallel execution achieves greater efficiency
• But, parallel programming is hard

– Parallelization
– Fault Tolerance
– Data Distribution
– Load Balancing

16

MapReduce (Hadoop and others)

• “MapReduce is a programming model and an associated
implementation for processing and generating large data
sets”

• Programming model
– Abstractions to express simple computations

• Library
– Takes care of the gory stuff: Parallelization, Fault

Tolerance, Data Distribution and Load Balancing

Programming Model
• To generate a set of output key-value pairs from

a set of input key-value pairs
– { < ki, vi >} à { < ko, vo >}

• Expressed using two abstractions:
– Map task

<ki, vi> à { < kint, vint > }

– Reduce task
< kint, {vint} > à < ko, vo >

• Library
– aggregates all the all intermediate values associated with the

same intermediate key
– passes the intermediate key-value pairs to reduce function

MapReduce Architecture

19

NoSQL Systems
• Key Value Stores

• Document Stores

• Scalable SQL Systems

• Data Processing Systems

20

Key Value

SW3 3TB London

B18 4BJ Birmingham

NoSQL Challenges
E.g., Flexible Schemas in MongoDB

What fields does db.user.find ({”category" :
”vacuum”}) have? 21

db.inventory.insert(
{
category: ”vacuum",
details: {

model: "14Q3",
manufacturer: "XYZ Company"

},
stock: [{ size: "S", qty: 25 }],
category: "clothing"

}
)

db.inventory.insert(
{
category: ”vacuum",
details: {

model: "14Q3",
manufacturer: "XYZ Company"

},
color: ”blue"

}
)

Data Management Landscape*

22
Query/Analysis Frequency

“S
tr

uc
tu

re
dn

es
s”

* according to me

ve
ry

no
t a

ll

low high

