Lecture 3: Turing, computability, halting problem

David Lester

2017
Outline

1. Introduction
2. Computability
3. The Church-Turing Thesis
4. Computable functions for $\alpha \rightarrow \beta$
5. The Halting Problem: An informal Argument
At the end of this lecture you will:

- Be able to show that a function is computable;
At the end of this lecture you will:

- Be able to show that a function is computable;
- Understand the use of diagonalization;
At the end of this lecture you will:

- Be able to show that a function is computable;
- Understand the use of diagonalization;
- Understand how to use the Church-Turing Thesis;
At the end of this lecture you will:

- Be able to show that a function is computable;
- Understand the use of diagonalization;
- Understand how to use the Church-Turing Thesis;
- Be able to show that a predicate is decidable; and
At the end of this lecture you will:

- Be able to show that a function is computable;
- Understand the use of diagonalization;
- Understand how to use the Church-Turing Thesis;
- Be able to show that a predicate is decidable; and
- Give an informal argument that it is not possible to test whether a program halts algorithmically.
A computable function is one for which we can write a program to implement the function.
A computable function is one for which we can write a program to implement the function.

We will write these programs in our simple programming language while.

By convention we will take the argument to a unary function by setting the variable \(x \) in the initial state \(s \).
Likewise, we will read out the answer from the variable \(x \) in the final state \(s' \), if the program terminates.
A computable function is one for which we can write a program to implement the function.

We will write these programs in our simple programming language while.

By convention we will take the argument to a unary function by setting the variable x in the initial state s.
Computable Functions $\mathbb{N} \rightarrow \mathbb{N}$

- A computable function is one for which we can write a program to implement the function.
- We will write these programs in our simple programming language while.
- By convention we will take the argument to a unary function by setting the variable x in the initial state s.
- Likewise, we will read out the answer from the variable x in the final state s', if the program terminates.
A function \(f : \mathbb{N} \to \mathbb{N} \) is *computable* if, and only if,

- There exists a *while* program \(S \);

Then

\[
\langle S, s \rangle \Rightarrow m s',
\]

\(s'(x) = f(n) \).
Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is *computable* if, and only if,

- There exists a *while* program S; and
- for each n there is a starting state s with $s(x) = n$; and
Definition

A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is *computable* if, and only if,

- There exists a *while* program S; and
- for each n there is a starting state s with $s(x) = n$; and
- the program S takes m steps to execute to a final state s' with s as starting state; *i.e.*

$$< S, s > \Rightarrow^m s';$$
Definition

A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is *computable* if, and only if,

- There exists a *while* program S; and
- for each n there is a starting state s with $s(x) = n$; and
- the program S takes m steps to execute to a final state s' with s as starting state; *i.e.*

$$< S, s > \Rightarrow^m s';$$

- then

$$s'(x) = f(n).$$
while-computable functions

- When we need to make distinctions we may call this while-computability.
while-computable functions

- When we need to make distinctions we may call this while-computability.
- There are also Turing-computable, λ-computable, etc. functions.
While-computable functions

- When we need to make distinctions we may call this while-computability.
- There are also Turing-computable, λ-computable, etc. functions.
- As we will see later, these all define the same set of functions to be computable.
Lemma

There are uncountably many functions from $\mathbb{N} \to \mathbb{N}$.

We will prove this using Diagonalization.

We will prove this in some detail.
Lemma

There are uncountably many functions from $\mathbb{N} \to \mathbb{N}$.

- We will prove this using *Diagonalization*.
Lemma

There are uncountably many functions from $\mathbb{N} \to \mathbb{N}$.

- We will prove this using Diagonalization.
- We will prove this in some detail.
Proof (I)

- There must be infinitely many functions, because there are infinitely many constant functions:

\[f_0(n) = 0, \ f_1(n) = 1, \ldots \ f_k(n) = k, \ldots \]
Proof (I)

- There must be infinitely many functions, because there are infinitely many constant functions:

\[f_0(n) = 0, \quad f_1(n) = 1, \quad \ldots \quad f_k(n) = k, \quad \ldots \]

- Each of these functions is computable because the program

\[x := k \]

implements the constant function \(f_k(n) = k \).
Proof (I)

- There must be infinitely many functions, because there are infinitely many constant functions:
 \[f_0(n) = 0, \quad f_1(n) = 1, \ldots \quad f_k(n) = k, \ldots \]

- Each of these functions is computable because the program
 \[x := k \]
 implements the constant function \(f_k(n) = k \).

- Suppose that there are only countably infinitely many functions of type \(\mathbb{N} \to \mathbb{N} \).
Proof (I)

- There must be infinitely many functions, because there are infinitely many constant functions:
 \[f_0(n) = 0, \; f_1(n) = 1, \; \ldots \; f_k(n) = k, \; \ldots \]

- Each of these functions is computable because the program
 \[x := k \]
 implements the constant function \(f_k(n) = k \).

- Suppose that there are only *countably* infinitely many functions of type \(\mathbb{N} \rightarrow \mathbb{N} \).

- A countably infinite set \(A \) has a bijection \(\phi \) with \(\mathbb{N} \).
There must be infinitely many functions, because there are infinitely many constant functions:

\[f_0(n) = 0, \quad f_1(n) = 1, \quad \ldots \quad f_k(n) = k, \quad \ldots \]

Each of these functions is computable because the program

\[x := k \]

implements the constant function \(f_k(n) = k \).

Suppose that there are only *countably* infinitely many functions of type \(\mathbb{N} \to \mathbb{N} \).

A countably infinite set \(A \) has a bijection \(\phi \) with \(\mathbb{N} \).

Thus we can lay out the set of functions in a sequence

\[f_0, f_1, \ldots, f_k, \ldots \]
We now *construct* a function which is *not* already in our list.
Proof (II)

- We now construct a function which is not already in our list.
- Two functions are the same (written \(f = g \)) if, and only if
 \[
 \forall (n \in \mathbb{N}). \ f(n) = g(n)
 \]
 This is known as extensionality.
Proof (II)

- We now *construct* a function which is *not* already in our list.
- Two functions are the same (written $f = g$) if, and only if

$$\forall \ (n \in \mathbb{N}). \ f(n) = g(n)$$

This is known as *extensionality*.
- The new function is defined as follows:

$$f(n) = f_n(n) + 1$$
Proof (II)

- We now *construct* a function which is *not* already in our list.
- Two functions are the same (written $f = g$) if, and only if
 \[\forall (n \in \mathbb{N}). \ f(n) = g(n) \]

 This is known as *extensionality*.
- The new function is defined as follows:
 \[f(n) = f_n(n) + 1 \]
- Because f is different from f_n for argument n, we know that
 \[f \neq f_n \]
To recap, we have shown:

There are infinitely many functions $\mathbb{N} \rightarrow \mathbb{N}$; and if we assume that we can enumerate all of the functions in $\mathbb{N} \rightarrow \mathbb{N}$, it turns out that we cannot, because there is a missing function (f). Therefore we have shown that there are uncountably many functions $\mathbb{N} \rightarrow \mathbb{N}$.

David Lester
Lecture 6
2017 10 / 31
Proof (III)

To recap, we have shown:

- There are infinitely many functions $\mathbb{N} \rightarrow \mathbb{N}$; and
To recap, we have shown:

- There are infinitely many functions $\mathbb{N} \to \mathbb{N}$; and
- If we assume that we can enumerate all of the functions in $\mathbb{N} \to \mathbb{N}$, it turns out that we cannot, because there is a missing function (f).
Proof (III)

To recap, we have shown:

- There are infinitely many functions \(\mathbb{N} \to \mathbb{N} \); and
- If we assume that we can enumerate all of the functions in \(\mathbb{N} \to \mathbb{N} \), it turns out that we cannot, because there is a missing function \(f \).
- Therefore we have shown that there are uncountably many functions \(\mathbb{N} \to \mathbb{N} \).
We have shown that there are countably many *computable* functions of type $\mathbb{N} \rightarrow \mathbb{N}$. But there are uncountably many functions of type $\mathbb{N} \rightarrow \mathbb{N}$. This means that there must be functions which are not computable.
We have shown that there are countably many computable functions of type $\mathbb{N} \rightarrow \mathbb{N}$.

But there are uncountably many functions of type $\mathbb{N} \rightarrow \mathbb{N}$.
Countable vs Uncountable

- We have shown that there are countably many *computable* functions of type $\mathbb{N} \rightarrow \mathbb{N}$.
- But there are uncountably many functions of type $\mathbb{N} \rightarrow \mathbb{N}$.
- This means that there *must* be functions which are *not* computable.
Corollary

There are non-computable functions of type $\mathbb{N} \rightarrow \mathbb{N}$.
During the 1930s many different ways were found to define what we would now call the concept of computation.
During the 1930s many different ways were found to define what we would now call the concept of computation.

The driver for this inventiveness was a desire to fill in some missing details in Gödel’s Incompleteness Theorem.
Definitions of Computation

Amongst the better known are:

- Schönfinkel’s Combinators 1924
- Church’s λ-Calculus 1936
- Gödel-Kleene μ-recursive functions 1936
- Turing’s Turing Machines 1936
- Post Production System 1943
- Markov Computable Functions 1954
- Shepherdson and Sturgiss’ URM 1963
Any sensible definition of computation will define the same functions to be computable as any other definition.
The Church-Turing Thesis

Important We can paraphrase the Church-Turing Hypothesis as: “A function is computable whenever we can write a program to implement it.”
We now generalize the definition of computability to functions of other types.
Computable functions for $\alpha \rightarrow \beta$

- We now generalize the definition of computability to functions of other types.
- To do this, we use coding techniques to code other types into \mathbb{N}.

\[\phi_X : (\mathbb{N} \times \mathbb{N}) \rightarrow \mathbb{N}, \text{ defined as:} \]
\[\phi_X(n, m) = 2^n(2^m + 1) - 1 \]
We now generalize the definition of computability to functions of other types.

To do this, we use coding techniques to code other types into \mathbb{N}.

The most important coding technique is $\phi_X : (\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$, defined as:

$$\phi_X(n, m) = 2^n(2m + 1) - 1$$
We say that a function \(f : (\mathbb{N} \times \mathbb{N}) \rightarrow \mathbb{N} \) is *computable*, if, and only if, the function \(g : \mathbb{N} \rightarrow \mathbb{N} \) is computable using the previous Definition, where

\[
f(x, y) = g(\phi_X(x, y))
\]
Computable functions of type $\mathbb{N} \to (\mathbb{N} \times \mathbb{N})$

Definition

We say that a function $f : \mathbb{N} \to (\mathbb{N}, \mathbb{N})$ is *computable*, if, and only if, the function $g : \mathbb{N} \to \mathbb{N}$ is computable using the previous Definition, where

$$f(x) = \phi_x^{-1}(g(x))$$
A function $f : \mathbb{N}^m \to \mathbb{N}^n$, with $n, m \geq 1$, is computable if, and only if, there is a function $g : \mathbb{N} \to \mathbb{N}$ which is computable in the sense of the Definition for $\mathbb{N} \to \mathbb{N}$, such that

$$g(\phi_x(x_1, \phi_x(x_2, \ldots \phi_x(x_{n-1}, x_n)))) =$$
$$\phi_x(y_1, \phi_x(y_2, \ldots \phi_x(y_{m-1}, y_m) \ldots))$$

where,

$$(y_1, y_2, \ldots y_{m-1}, y_m) = f(x_1, x_2, \ldots, x_{n-1}, x_n)$$
Decidable Predicates

Definition

The predicate P is *decidable* if, and only if, there is a computable function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$f(x) = \begin{cases} 1 & \text{if } P(x) \text{ holds} \\ 0 & \text{if } P(x) \text{ doesn’t hold} \end{cases}$$
A function that is not decidable is *undecidable*.

- The associated function \(f \) is the characteristic function for the predicate \(P \).
- The while program implementing \(f \) is called the decision procedure for \(P \).
A function that is not decidable is *undecidable*. The associated function f is the characteristic function for the predicate P.
A function that is not decidable is \textit{undecidable}.

The associated function f is the characteristic function for the predicate P.

The \texttt{while} program implementing f is called the \textit{decision procedure} for P.
Lemma

If P and Q are decidable predicates, then all of the following are also decidable:

- $\neg P$;
- $P \land Q$;
- $P \lor Q$; and
- $P \Rightarrow Q$.
Notice that decidable predicates are total, i.e. every input value gives a value of true or false.
Definition

Partially Decidable Predicates

A partial function P is partially decidable if, and only if, there exists a computable partial function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$f(x) = \begin{cases} 1 & \text{if } P(x) \text{ holds} \\ \text{undefined} & \text{if } P(x) \text{ doesn't hold} \end{cases}$$

The partial function f is called the partial characteristic function of P, and the associated program in while is a partial decision procedure for P.
Partially Decidable Predicates

Definition

Partially Decidable Predicates

The partial function P is *partially decidable* if, and only if, there exists a computable partial function $f : \mathbb{N} \rightarrow \mathbb{N}$ with

$$f(x) = \begin{cases} 1 & \text{if } P(x) \text{ holds} \\ \text{undefined} & \text{if } P(x) \text{ doesn’t hold} \end{cases}$$
Partially Decidable Predicates

Definition

Partially Decidable Predicates

- The partial function P is *partially decidable* if, and only if, there exists a computable partial function $f : \mathbb{N} \mapsto \mathbb{N}$ with

\[
f(x) = \begin{cases}
1 & \text{if } P(x) \text{ holds} \\
\text{undefined} & \text{if } P(x) \text{ doesn't hold}
\end{cases}
\]

- The partial function f is called the *partial characteristic function* of P, and
The partial function P is *partially decidable* if, and only if, there exists a computable partial function $f : \mathbb{N} \hookrightarrow \mathbb{N}$ with

$$f(x) = \begin{cases} 1 & \text{if } P(x) \text{ holds} \\ \text{undefined} & \text{if } P(x) \text{ doesn’t hold} \end{cases}$$

- The partial function f is called the *partial characteristic function* of P, and
- the associated program in *while* is a *partial decision procedure* for P.

We will outline an informal argument that we cannot write a program to detect when another program will terminate with a given input.
We will outline an informal argument that we cannot write a program to detect when another program will terminate with a given input.

To generate a contradiction, we will assume that the ‘halt-tester’ program is S_{halt}, and that this takes the program p and the program’s input n as inputs (as a pair in variable x) and outputs either 0 or 1 in variable x, representing false and true respectively.
We will outline an informal argument that we cannot write a program to detect when another program will terminate with a given input.

To generate a contradiction, we will assume that the ‘halt-tester’ program is S_{halt}, and that this takes the program p and the program’s input n as inputs (as a pair in variable x) and outputs either 0 or 1 in variable x, representing false and true respectively.

In other words we have assumed that the predicate $\text{halts}(p, n)$ is decidable, and has decision procedure S_{halt}.
The next program to define is S_{Self}, this takes a program p as input and returns true ($x = 1$) if the program halts when its input is itself, and false ($x = 0$) otherwise.

```plaintext
z := x;
y := 1;
while 1 ≤ z do
  (y := y × 2;
   z := z − 1);

x := (2 × x + 1) × y − 1;
```
The next program to define is S_{self}, this takes a program p as input and returns true ($x = 1$) if the program halts when its input is itself, and false ($x = 0$) otherwise.

We can define the decision procedure S_{self} as:

\[
\begin{align*}
z &:= x;
 y := 1;
 \text{while } 1 \leq z \text{ do } (y := y \times 2;
 z := z - 1); \\
x &:= (2 \times x + 1) \times y - 1; \\
S_{\text{halt}}
\end{align*}
\]
We now come to the clever bit.

- We define the following weird partial function:

\[
\text{weird}(p) = \begin{cases}
\text{undefined} & \text{if } \text{self}(p) \\
\text{true} & \text{otherwise}
\end{cases}
\]

(1)
We now come to the clever bit.

- We define the following weird partial function:
 \[
 \text{weird}(p) = \begin{cases}
 \text{undefined} & \text{if } \text{self}(p) \\
 \text{true} & \text{otherwise}
 \end{cases}
 \tag{1}
 \]

- The partial function weird is computable, because we can write its program \(S_{\text{weird}} \) as:

 \[
 S_{\text{self}}; \text{if } x = 1 \text{ then (while true do skip) else } x := 1
 \]
We now come to a paradox, i.e. something that is both logically true and logically false. What happens when we supply the partial function weird with itself as input?

- Using Equation 1, we see that

\[
\text{weird}(\text{weird}) = \begin{cases}
\text{undefined} & \text{if } \text{self}(\text{weird}) \\
\text{true} & \text{if } \neg\text{self}(\text{weird})
\end{cases}
\]

(2)
We now come to a paradox, i.e. something that is both logically true and logically false. What happens when we supply the partial function weird with itself as input?

- Using Equation 1, we see that

\[
\text{weird(weird)} = \begin{cases}
\text{undefined} & \text{if self(weird)} \\
\text{true} & \text{if } \neg \text{self(weird)}
\end{cases}
\] \hspace{1cm} (2)

- But

\[
\text{self(weird)} = \text{halt(weird, weird)}
\]
Case Analysis

There are now two cases for $\text{halt}(\text{weird}, \text{weird})$:

true In this case we take the first branch of Equation 2, which goes into an infinite loop, i.e. it fails to terminate. But this is the effect of running the program weird using its own representation as input, and the halt-tester tells us this terminates. It is therefore a contradiction.

false In this case we take the second branch of Equation 2, which returns true, and thus running the program weird with itself as its input terminates. However, this contradicts the result given by the halt-tester, which is false. It is therefore also a contradiction.

Thus no matter whether the result is true or false, we have generated a contradiction. We have therefore shown that it is impossible to write a halt-tester program in our while language.
Case Analysis

There are now two cases for $\text{halt(weird, weird)}$:

true In this case we take the first branch of Equation 2, which goes into an infinite loop, i.e. it fails to terminate. But this is the effect of running the program weird using its own representation as input, and the halt-tester tells us this terminates. It is therefore a contradiction.

false In this case we take the second branch of Equation 2, which returns true, and thus running the program weird with itself as its input terminates. However, this contradicts the result given by the halt-tester, which is false. It is therefore also a contradiction.

Thus no matter whether the result is true or false, we have generated a contradiction. We have therefore shown that it is impossible to write a halt-tester program in our while language.
This does not quite show that it is impossible to write a halt-tester, because maybe the problem lies in the expressiveness of the programming language, and perhaps using a different programming language with extra features will permit us to write the halt-tester. The notes will show that this is not the case, by making the proof more formal.