
Lecture 3: Turing, computability, halting problem

David Lester

2017

David Lester Lecture 6 2017 1 / 31



Outline

1 Introduction

2 Computability

3 The Church-Turing Thesis

4 Computable functions for α→ β

5 The Halting Problem: An informal Argument

David Lester Lecture 6 2017 2 / 31



Introduction

At the end of this lecture you will:

Be able to show that a function is computable;

Understand the use of diagonalization;

Understand how to use the Church-Turing Thesis;

Be able to show that a predicate is decidable; and

Give an informal argument that it is not possible to test whether a
program halts algorithmically.

David Lester Lecture 6 2017 3 / 31



Introduction

At the end of this lecture you will:

Be able to show that a function is computable;

Understand the use of diagonalization;

Understand how to use the Church-Turing Thesis;

Be able to show that a predicate is decidable; and

Give an informal argument that it is not possible to test whether a
program halts algorithmically.

David Lester Lecture 6 2017 3 / 31



Introduction

At the end of this lecture you will:

Be able to show that a function is computable;

Understand the use of diagonalization;

Understand how to use the Church-Turing Thesis;

Be able to show that a predicate is decidable; and

Give an informal argument that it is not possible to test whether a
program halts algorithmically.

David Lester Lecture 6 2017 3 / 31



Introduction

At the end of this lecture you will:

Be able to show that a function is computable;

Understand the use of diagonalization;

Understand how to use the Church-Turing Thesis;

Be able to show that a predicate is decidable; and

Give an informal argument that it is not possible to test whether a
program halts algorithmically.

David Lester Lecture 6 2017 3 / 31



Introduction

At the end of this lecture you will:

Be able to show that a function is computable;

Understand the use of diagonalization;

Understand how to use the Church-Turing Thesis;

Be able to show that a predicate is decidable; and

Give an informal argument that it is not possible to test whether a
program halts algorithmically.

David Lester Lecture 6 2017 3 / 31



Computable Functions N→ N

A computable function is one for which we can write a program to
implement the function.

We will write these programs in our simple programming language
while.

By convention we will take the argument to a unary function by
setting the variable x in the initial state s.

Likewise, we will read out the answer from the variable x in the final
state s ′, if the program terminates.

David Lester Lecture 6 2017 4 / 31



Computable Functions N→ N

A computable function is one for which we can write a program to
implement the function.

We will write these programs in our simple programming language
while.

By convention we will take the argument to a unary function by
setting the variable x in the initial state s.

Likewise, we will read out the answer from the variable x in the final
state s ′, if the program terminates.

David Lester Lecture 6 2017 4 / 31



Computable Functions N→ N

A computable function is one for which we can write a program to
implement the function.

We will write these programs in our simple programming language
while.

By convention we will take the argument to a unary function by
setting the variable x in the initial state s.

Likewise, we will read out the answer from the variable x in the final
state s ′, if the program terminates.

David Lester Lecture 6 2017 4 / 31



Computable Functions N→ N

A computable function is one for which we can write a program to
implement the function.

We will write these programs in our simple programming language
while.

By convention we will take the argument to a unary function by
setting the variable x in the initial state s.

Likewise, we will read out the answer from the variable x in the final
state s ′, if the program terminates.

David Lester Lecture 6 2017 4 / 31



Definition

A function f : N→ N is computable if, and only if,

There exists a while program S ; and

for each n there is a starting state s with s(x) = n; and
the program S takes m steps to execute to a final state s ′ with
s as starting state; i.e.

< S , s >⇒m s ′;

then
s ′(x) = f (n).

David Lester Lecture 6 2017 5 / 31



Definition

A function f : N→ N is computable if, and only if,

There exists a while program S ; and
for each n there is a starting state s with s(x) = n; and

the program S takes m steps to execute to a final state s ′ with
s as starting state; i.e.

< S , s >⇒m s ′;

then
s ′(x) = f (n).

David Lester Lecture 6 2017 5 / 31



Definition

A function f : N→ N is computable if, and only if,

There exists a while program S ; and
for each n there is a starting state s with s(x) = n; and
the program S takes m steps to execute to a final state s ′ with
s as starting state; i.e.

< S , s >⇒m s ′;

then
s ′(x) = f (n).

David Lester Lecture 6 2017 5 / 31



Definition

A function f : N→ N is computable if, and only if,

There exists a while program S ; and
for each n there is a starting state s with s(x) = n; and
the program S takes m steps to execute to a final state s ′ with
s as starting state; i.e.

< S , s >⇒m s ′;

then
s ′(x) = f (n).

David Lester Lecture 6 2017 5 / 31



while-computable functions

When we need to make distinctions we may call this
while-computability.

There are also Turing-computable, λ-computable, etc. functions.

As we will see later, these all define the same set of functions to be
computable.

David Lester Lecture 6 2017 6 / 31



while-computable functions

When we need to make distinctions we may call this
while-computability.

There are also Turing-computable, λ-computable, etc. functions.

As we will see later, these all define the same set of functions to be
computable.

David Lester Lecture 6 2017 6 / 31



while-computable functions

When we need to make distinctions we may call this
while-computability.

There are also Turing-computable, λ-computable, etc. functions.

As we will see later, these all define the same set of functions to be
computable.

David Lester Lecture 6 2017 6 / 31



Lemma

There are uncountably many functions from N→ N.

We will prove this using Diagonalization.

We will prove this in some detail.

David Lester Lecture 6 2017 7 / 31



Lemma

There are uncountably many functions from N→ N.

We will prove this using Diagonalization.

We will prove this in some detail.

David Lester Lecture 6 2017 7 / 31



Lemma

There are uncountably many functions from N→ N.

We will prove this using Diagonalization.

We will prove this in some detail.

David Lester Lecture 6 2017 7 / 31



Proof (I)

There must be infinitely many functions, because there are infinitely
many constant functions:

f0(n) = 0, f1(n) = 1, . . . fk(n) = k, . . .

Each of these functions is computable because the program

x := k

implements the constant function fk(n) = k .

Suppose that there are only countably infinitely many functions of
type N→ N.

A countably infinite set A has a bijection φ with N.

Thus we can lay out the set of functions in a sequence

f0, f1, . . . , fk , . . .

David Lester Lecture 6 2017 8 / 31



Proof (I)

There must be infinitely many functions, because there are infinitely
many constant functions:

f0(n) = 0, f1(n) = 1, . . . fk(n) = k, . . .

Each of these functions is computable because the program

x := k

implements the constant function fk(n) = k .

Suppose that there are only countably infinitely many functions of
type N→ N.

A countably infinite set A has a bijection φ with N.

Thus we can lay out the set of functions in a sequence

f0, f1, . . . , fk , . . .

David Lester Lecture 6 2017 8 / 31



Proof (I)

There must be infinitely many functions, because there are infinitely
many constant functions:

f0(n) = 0, f1(n) = 1, . . . fk(n) = k, . . .

Each of these functions is computable because the program

x := k

implements the constant function fk(n) = k .

Suppose that there are only countably infinitely many functions of
type N→ N.

A countably infinite set A has a bijection φ with N.

Thus we can lay out the set of functions in a sequence

f0, f1, . . . , fk , . . .

David Lester Lecture 6 2017 8 / 31



Proof (I)

There must be infinitely many functions, because there are infinitely
many constant functions:

f0(n) = 0, f1(n) = 1, . . . fk(n) = k, . . .

Each of these functions is computable because the program

x := k

implements the constant function fk(n) = k .

Suppose that there are only countably infinitely many functions of
type N→ N.

A countably infinite set A has a bijection φ with N.

Thus we can lay out the set of functions in a sequence

f0, f1, . . . , fk , . . .

David Lester Lecture 6 2017 8 / 31



Proof (I)

There must be infinitely many functions, because there are infinitely
many constant functions:

f0(n) = 0, f1(n) = 1, . . . fk(n) = k, . . .

Each of these functions is computable because the program

x := k

implements the constant function fk(n) = k .

Suppose that there are only countably infinitely many functions of
type N→ N.

A countably infinite set A has a bijection φ with N.

Thus we can lay out the set of functions in a sequence

f0, f1, . . . , fk , . . .

David Lester Lecture 6 2017 8 / 31



Proof (II)

We now construct a function which is not already in our list.

Two functions are the same (written f = g) if, and only if

∀ (n ∈ N). f (n) = g(n)

This is known as extensionality.

The new function is defined as follows:

f (n) = fn(n) + 1

Because f is different from fn for argument n, we know that

f 6= fn

David Lester Lecture 6 2017 9 / 31



Proof (II)

We now construct a function which is not already in our list.

Two functions are the same (written f = g) if, and only if

∀ (n ∈ N). f (n) = g(n)

This is known as extensionality.

The new function is defined as follows:

f (n) = fn(n) + 1

Because f is different from fn for argument n, we know that

f 6= fn

David Lester Lecture 6 2017 9 / 31



Proof (II)

We now construct a function which is not already in our list.

Two functions are the same (written f = g) if, and only if

∀ (n ∈ N). f (n) = g(n)

This is known as extensionality.

The new function is defined as follows:

f (n) = fn(n) + 1

Because f is different from fn for argument n, we know that

f 6= fn

David Lester Lecture 6 2017 9 / 31



Proof (II)

We now construct a function which is not already in our list.

Two functions are the same (written f = g) if, and only if

∀ (n ∈ N). f (n) = g(n)

This is known as extensionality.

The new function is defined as follows:

f (n) = fn(n) + 1

Because f is different from fn for argument n, we know that

f 6= fn

David Lester Lecture 6 2017 9 / 31



Proof (III)

To recap, we have shown:

There are infinitely many functions N→ N; and

If we assume that we can enumerate all of the functions in N→ N, it
turns out that we cannot, because there is a missing function (f ).

Therefore we have shown that there are uncountably many functions
N→ N.

David Lester Lecture 6 2017 10 / 31



Proof (III)

To recap, we have shown:

There are infinitely many functions N→ N; and

If we assume that we can enumerate all of the functions in N→ N, it
turns out that we cannot, because there is a missing function (f ).

Therefore we have shown that there are uncountably many functions
N→ N.

David Lester Lecture 6 2017 10 / 31



Proof (III)

To recap, we have shown:

There are infinitely many functions N→ N; and

If we assume that we can enumerate all of the functions in N→ N, it
turns out that we cannot, because there is a missing function (f ).

Therefore we have shown that there are uncountably many functions
N→ N.

David Lester Lecture 6 2017 10 / 31



Proof (III)

To recap, we have shown:

There are infinitely many functions N→ N; and

If we assume that we can enumerate all of the functions in N→ N, it
turns out that we cannot, because there is a missing function (f ).

Therefore we have shown that there are uncountably many functions
N→ N.

David Lester Lecture 6 2017 10 / 31



Countable vs Uncountable

We have shown that there are countably many computable functions
of type N→ N.

But there are uncountably many functions of type N→ N.

This means that there must be functions which are not computable.

David Lester Lecture 6 2017 11 / 31



Countable vs Uncountable

We have shown that there are countably many computable functions
of type N→ N.

But there are uncountably many functions of type N→ N.

This means that there must be functions which are not computable.

David Lester Lecture 6 2017 11 / 31



Countable vs Uncountable

We have shown that there are countably many computable functions
of type N→ N.

But there are uncountably many functions of type N→ N.

This means that there must be functions which are not computable.

David Lester Lecture 6 2017 11 / 31



Non-computability

Corollary

There are non-computable functions of type N→ N.

David Lester Lecture 6 2017 12 / 31



The Church-Turing Thesis

During the 1930s many different ways were found to define what we
would now call the concept of computation.

The driver for this inventiveness was a desire to fill in some missing
details in Gödel’s Incompleteness Theorem.

David Lester Lecture 6 2017 13 / 31



The Church-Turing Thesis

During the 1930s many different ways were found to define what we
would now call the concept of computation.

The driver for this inventiveness was a desire to fill in some missing
details in Gödel’s Incompleteness Theorem.

David Lester Lecture 6 2017 13 / 31



Definitions of Computation

Amongst the better known are:

Schönfinkel’s Combinators 1924

Church’s λ-Calculus 1936

Gödel-Kleene µ-recursive functions 1936

Turing’s Turing Machines 1936

Post Production System 1943

Markov Computable Functions 1954

Shepherdson and Sturgiss’ URM 1963

David Lester Lecture 6 2017 14 / 31



The Church-Turing Thesis

Thesis (Church-Turing)

Any sensible definition of computation will define the same functions
to be computable as any other definition.

David Lester Lecture 6 2017 15 / 31



The Church-Turing Thesis

Important We can paraphrase the Church-Turing Hypothesis as:
“A function is computable whenever we can write a program to
implement it.”

David Lester Lecture 6 2017 16 / 31



Computable functions for α→ β

We now generalize the definition of computability to functions of
other types.

To do this, we use coding techniques to code other types into N.

The most important coding technique is φX : (N× N)→ N, defined
as:

φX (n,m) = 2n(2m + 1)− 1

David Lester Lecture 6 2017 17 / 31



Computable functions for α→ β

We now generalize the definition of computability to functions of
other types.

To do this, we use coding techniques to code other types into N.

The most important coding technique is φX : (N× N)→ N, defined
as:

φX (n,m) = 2n(2m + 1)− 1

David Lester Lecture 6 2017 17 / 31



Computable functions for α→ β

We now generalize the definition of computability to functions of
other types.

To do this, we use coding techniques to code other types into N.

The most important coding technique is φX : (N× N)→ N, defined
as:

φX (n,m) = 2n(2m + 1)− 1

David Lester Lecture 6 2017 17 / 31



Computable functions of type (N× N)→ N

Definition

We say that a function f : (N,N)→ N is computable, if, and only
if, the function g : N→ N is computable using the previous
Definition, where

f (x , y) = g(φX (x , y))

David Lester Lecture 6 2017 18 / 31



Computable functions of type N→ (N× N)

Definition

We say that a function f : N→ (N,N) is computable, if, and only
if, the function g : N→ N is computable using the previous
Definition, where

f (x) = φ−1X (g(x))

David Lester Lecture 6 2017 19 / 31



Generalized Computability on Nm → Nn

Definition

A function f : Nm → Nn, with n,m ≥ 1, is computable if, and only
if, there is a function g : N→ N which is computable in the sense
of the Definition for N→ N, such that

g(φx(x1, φx(x2, . . . φx(xn−1, xn)))) =
(φx(y1, φx(y2, . . . φx(ym−1, ym) . . . ))

where,

(y1, y2, . . . ym−1, ym) = f (x1, x2, . . . , xn−1, xn))

David Lester Lecture 6 2017 20 / 31



Decidable Predicates

Definition

The predicate P is decidable if, and only if, there is a computable
function f : N→ N such that:

f (x) =

{
1 if P(x) holds
0 if P(x) doesn’t hold

David Lester Lecture 6 2017 21 / 31



Notes

A function that is not decidable is undecidable.

The associated function f is the characteristic function for the
predicate P.

The while program implementing f is called the decision procedure
for P.

David Lester Lecture 6 2017 22 / 31



Notes

A function that is not decidable is undecidable.

The associated function f is the characteristic function for the
predicate P.

The while program implementing f is called the decision procedure
for P.

David Lester Lecture 6 2017 22 / 31



Notes

A function that is not decidable is undecidable.

The associated function f is the characteristic function for the
predicate P.

The while program implementing f is called the decision procedure
for P.

David Lester Lecture 6 2017 22 / 31



Logical Connectives for Decidable Predicates

Lemma

If P and Q are decidable predicates, then all of the following are also
decidable:

¬P;
P ∧ Q;
P ∨ Q; and
P ⇒ Q.

David Lester Lecture 6 2017 23 / 31



Partially Decidable Predicates

Notice that decidable predicates are total, i.e. every input value gives
a value of true or false.

David Lester Lecture 6 2017 24 / 31



Partially Decidable Predicates

Definition

Partially Decidable Predicates

The partial function P is partially decidable if, and only if,
there exists a computable partial function f : N ↪→ N with

f (x) =

{
1 if P(x) holds
undefined if P(x) doesn’t hold

The partial function f is called the partial characteristic
function of P, and
the associated progam in while is a partial decision procedure
for P.

David Lester Lecture 6 2017 25 / 31



Partially Decidable Predicates

Definition

Partially Decidable Predicates

The partial function P is partially decidable if, and only if,
there exists a computable partial function f : N ↪→ N with

f (x) =

{
1 if P(x) holds
undefined if P(x) doesn’t hold

The partial function f is called the partial characteristic
function of P, and
the associated progam in while is a partial decision procedure
for P.

David Lester Lecture 6 2017 25 / 31



Partially Decidable Predicates

Definition

Partially Decidable Predicates

The partial function P is partially decidable if, and only if,
there exists a computable partial function f : N ↪→ N with

f (x) =

{
1 if P(x) holds
undefined if P(x) doesn’t hold

The partial function f is called the partial characteristic
function of P, and

the associated progam in while is a partial decision procedure
for P.

David Lester Lecture 6 2017 25 / 31



Partially Decidable Predicates

Definition

Partially Decidable Predicates

The partial function P is partially decidable if, and only if,
there exists a computable partial function f : N ↪→ N with

f (x) =

{
1 if P(x) holds
undefined if P(x) doesn’t hold

The partial function f is called the partial characteristic
function of P, and
the associated progam in while is a partial decision procedure
for P.

David Lester Lecture 6 2017 25 / 31



The Halting Problem: An informal Argument

We will outline an informal argument that we cannot write a program
to detect when another program will terminate with a given input.

To generate a contradiction, we will assume that the ‘halt-tester’
program is Shalt, and that this takes the program p and the
program’s input n as inputs (as a pair in variable x) and outputs
either 0 or 1 in variable x , representing false and true respectively.

In other words we have assumed that the predicate halts(p, n) is
decidable, and has decision procedure Shalt.

David Lester Lecture 6 2017 26 / 31



The Halting Problem: An informal Argument

We will outline an informal argument that we cannot write a program
to detect when another program will terminate with a given input.

To generate a contradiction, we will assume that the ‘halt-tester’
program is Shalt, and that this takes the program p and the
program’s input n as inputs (as a pair in variable x) and outputs
either 0 or 1 in variable x , representing false and true respectively.

In other words we have assumed that the predicate halts(p, n) is
decidable, and has decision procedure Shalt.

David Lester Lecture 6 2017 26 / 31



The Halting Problem: An informal Argument

We will outline an informal argument that we cannot write a program
to detect when another program will terminate with a given input.

To generate a contradiction, we will assume that the ‘halt-tester’
program is Shalt, and that this takes the program p and the
program’s input n as inputs (as a pair in variable x) and outputs
either 0 or 1 in variable x , representing false and true respectively.

In other words we have assumed that the predicate halts(p, n) is
decidable, and has decision procedure Shalt.

David Lester Lecture 6 2017 26 / 31



Program self

The next program to define is Sself, this takes a program p as input
and returns true (x = 1) if the program halts when its input is itself,
and false (x = 0) otherwise.

We can define the decision procedure Sself as:

z := x ; y := 1; while 1 ≤ z do (y := y × 2; z := z − 1);
x := (2× x + 1)× y − 1;
Shalt

David Lester Lecture 6 2017 27 / 31



Program self

The next program to define is Sself, this takes a program p as input
and returns true (x = 1) if the program halts when its input is itself,
and false (x = 0) otherwise.

We can define the decision procedure Sself as:

z := x ; y := 1; while 1 ≤ z do (y := y × 2; z := z − 1);
x := (2× x + 1)× y − 1;
Shalt

David Lester Lecture 6 2017 27 / 31



Program weird

We now come to the clever bit.

We define the following weird partial function:

weird(p) =

{
undefined if self(p)
true otherwise

(1)

The partial function weird is computable, because we can write its
program Sweird as:

Sself; if x = 1 then (while true do skip) else x := 1

David Lester Lecture 6 2017 28 / 31



Program weird

We now come to the clever bit.

We define the following weird partial function:

weird(p) =

{
undefined if self(p)
true otherwise

(1)

The partial function weird is computable, because we can write its
program Sweird as:

Sself; if x = 1 then (while true do skip) else x := 1

David Lester Lecture 6 2017 28 / 31



We now come to a paradox, i.e. something that is both logically true and
logically false. What happens when we supply the partial function wierd
with itself as input?

Using Equation 1, we see that

weird(weird) =

{
undefined if self(weird)
true if ¬self(weird)

(2)

But
self(weird) = halt(weird, weird)

David Lester Lecture 6 2017 29 / 31



We now come to a paradox, i.e. something that is both logically true and
logically false. What happens when we supply the partial function wierd
with itself as input?

Using Equation 1, we see that

weird(weird) =

{
undefined if self(weird)
true if ¬self(weird)

(2)

But
self(weird) = halt(weird, weird)

David Lester Lecture 6 2017 29 / 31



Case Analysis

There are now two cases for halt(weird, weird):

true In this case we take the first branch of Equation 2, which
goes into an infinite loop, i.e. it fails to terminate. But this
is the effect of running the program weird using its own
representation as input, and the halt-tester tells us this
terminates. It is therefore a contradiction.

false In this case we take the second branch of Equation 2, which
returns true, and thus running the program weird with itself
as its input terminates. However, this contradicts the result
given by the halt-tester, which is false. It is therefore also a
contradiction.

Thus no matter whether the result is true or false, we have generated a
contradiction. We have therefore shown that it is impossible to write a
halt-tester program in our while language.

David Lester Lecture 6 2017 30 / 31



Case Analysis

There are now two cases for halt(weird, weird):

true In this case we take the first branch of Equation 2, which
goes into an infinite loop, i.e. it fails to terminate. But this
is the effect of running the program weird using its own
representation as input, and the halt-tester tells us this
terminates. It is therefore a contradiction.

false In this case we take the second branch of Equation 2, which
returns true, and thus running the program weird with itself
as its input terminates. However, this contradicts the result
given by the halt-tester, which is false. It is therefore also a
contradiction.

Thus no matter whether the result is true or false, we have generated a
contradiction. We have therefore shown that it is impossible to write a
halt-tester program in our while language.

David Lester Lecture 6 2017 30 / 31



Conclusion

This does not quite show that it is impossible to write a halt-tester,
because maybe the problem lies in the expressiveness of the programming
language, and perhaps using a different programming language with extra
features will permit us to write the halt-tester.
The notes will show that this is not the case, by making the proof more
formal.

David Lester Lecture 6 2017 31 / 31




