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Introduction

At the end of this lecture you will:

@ Be aware of different sorts of mathematical arithemtic systems.
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Introduction

At the end of this lecture you will:

Be aware of different sorts of mathematical arithemtic systems.
Have a feeling for countability arguments.

Be aware of the practical problems that occur when using the usual
numbers provided on a computer.

Be aware of the issues and limitations arising when using numeric
simulations.

Be alert to the issue of chaotic behaviour, which we might expect to
be common in brain simulation.
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Natural Numbers (N)

Die ganzen Zahlen hat der liebe Gott gemacht,
alles andere ist Menschenwerk.
Leopold Kronecker (1823-1891)

@ These are the simplest kind of number: the counting numbers
{1, 2, 3, ...}
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Natural Numbers (N)

Die ganzen Zahlen hat der liebe Gott gemacht,
alles andere ist Menschenwerk.
Leopold Kronecker (1823-1891)

@ These are the simplest kind of number: the counting numbers
{1, 2, 3, ...}

e Computer Scientists (who start at 0) and Mathematicians (who
usually start at 1) differ on where to start!

@ One implementation of the natural numbers is Peano Arithmetic.
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Peano Arithmetic

A Peano number is either Z (for zero), or if n is a Peano number,
then S n (for successor) is also a Peano Number.
Together Z and S define a recursive data type.

Example

We can implement addition with the following recursive function

(add).

add(Z, m) m
add(S n, m) = add(n,S m)
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Peano Arithmetic

Exercise

Show how to implement multiplication. Hint use the definition of
add above.

Exercise

Show how to implement the power function n™. Hint use the
definition of mul above.
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How many counting numbers are there?

There are infinitely many counting numbers.

Proof

@ Assume that there is only a finite number of elements of N.
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How many counting numbers are there?

There are infinitely many counting numbers.

Proof

@ Assume that there is only a finite number of elements of N.

@ Then there must be a biggest one. Call it n.

@ But by Peano Arithmetic, Sne N, and S n > n.

@ So n is not the biggest element of N which is a contradiction.
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A Digression on Bijections

@ Bijections are a very special kind of function from one set S (for
source) to another set T (for target). We normally write f : S — T
to remind ourselves which sets a function is mapping between. When
| remember, | try to use the symbol ¢ for bijections.
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A Digression on Bijections

@ Bijections are a very special kind of function from one set S (for
source) to another set T (for target). We normally write f : S — T
to remind ourselves which sets a function is mapping between. When
| remember, | try to use the symbol ¢ for bijections.

@ The key property of bijections is that they map one element in the
source set (s € S) to one element in the target set (t € T), and vice
versa.

@ Because of this ‘one-to-one’ property, for every bijection ¢ : S — T
there is an inverse function ¢=% : T — S with:

o »~1: T — Sis itself a bijection;
o W(seS): (p o o)(s )= s and
o V(teT):(pod t)(t) =

David Lester Lecture 5 2017 8 /31



An Important Bijection Property

Definition

If there is a bijection between two sets A and B, then these two
sets have the same cardinality. We write

Card(A) = Card(B)

For finite sets this simply says that the two sets A and B must have the
same number of elements.
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Integers (7Z)

@ The set of integers extends the set of natural numbers by including
negative number of the form —n where n € N.
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Integers (7Z)

@ The set of integers extends the set of natural numbers by including
negative number of the form —n where n € N.
e The Algebraic Structure (Z,0,+) is an Abelian Group.
Identity O is a left and right identity element for the + operation.
Associativity (x +y)+z =x+ (y + z).
Inverse For every x € Z, thereis a y € Z, with x4+ y = 0.
(Choose y = —x.)
Commutitivity x +y =y + x.
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Countability, or: bijections with subsets of N

Definition

We say that a set A is countable, if there is a subset of the natural
numbers B C N and a bijection ¢ : A — B.

If B is infinite (i.e. B =N), then we say that A is countably
infinite. If there is no bijection ¢ then the set a is uncountable.
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Enumerations

If A is countably infinite, then there exists an enumeration of the set
A, i.e. A can be written out as:

{ao, dl, a2, ... ,dk, --.- }

Proof

Let a, = ¢~ 1(n).
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How many integers are there?

There are countably infinitely many integers.

Proof

Let ¢ : Z — N be the function

. 2i ifi>0
¢(’)_{ —2i—1 ifi<0

In short: the negative integers are mapped to odd natural numbers;
non-negative integers are mapped to even natural numbers.

O
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Rationals (Q)

@ The set of rational number Q is an extension of the integers, in which
we permit the representation of fractions.
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Rationals (Q)

@ The set of rational number Q is an extension of the integers, in which
we permit the representation of fractions.

e Formally, g € Q if there exists n € Z and d € N — {0}, such that
qg=n/d.

@ The Algebraic Structure (Q,0,1,+, x) is a Field.
Abelian Additive Group (@Q,0,+) is an Abelian Group.

Abelian Multiplicative Group (Q — {0}, 1, x) is an Abelian Group.
Distributivity x x (y +2z) =x Xy + x X z.
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A bijection for pairs of natural numbers

Rather surprisingly, there is a bijection that maps pairs of natural
numbers to a single natural number.

ox :(n, m)=2"2m+1) -1
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The rationals are countable

The rationals Q are countable.

Proof

@ First map the numerator n to a natural number n’ using the
bijection we develped to show that the integers are countable.

O
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The rationals are countable

The rationals Q are countable.

Proof
@ First map the numerator n to a natural number n’ using the

bijection we develped to show that the integers are countable.
@ Then use ¢, to map n’ and d — 1 to a natural number m.

m= ¢x(n',d — 1)

O
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On the matter of computability

@ So far we have been very mathematical.
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On the matter of computability

@ So far we have been very mathematical.

@ What are the computer science implications?
@ Good News! All of the number systems we have discussed so far are
available to you.
e In C and C++, download gmp from the gnu website.
o In python use the gmpy2 package; this links to gmp.
o Be warned! These libraries are much slower than usual computer
arithmetic, but if they deliver an answer then that answer is (probably)
correct.
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Reals (R)

@ As you might imagine by now, we are going to extend the rational
numbers.
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@ As you might imagine by now, we are going to extend the rational
numbers.

@ This time we add the innocuous-seeming Axiom of Real
Completeness.

o If X € R is bounded above by y, that is every element of the set
z € X satisfies z < y, then there exists a least upper bound x € R.
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V/2 is irrational

The square root of 2 is not a rational number: /2 & Q.

Proof
@ Suppose on the contrary that v/2 € Q.

O
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V/2 is irrational

The square root of 2 is not a rational number: /2 & Q.

Proof

@ Suppose on the contrary that v/2 € Q.

@ Then there exists n and d with v/2 = n/d, and this is a proper
fraction (i.e. n and d have no common factors).

By definition (n/d)? = n?/d? = 2.

Thus n is divisible by 2. Write n = 2n’.

We now have: (2n')? = 4n? = 2d?

Thus d is also divisible by 2.

This contradicts our assumption that there is a proper fraction to
represent /2.

0000

O
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A set with no rational least upper bound

The set S = {x € Q | x?> < 2} has no rational least upper bound.

Proof

The least upper bound is v/2; but this is not a rational number.

The set S = {x € R | x? < 2} has a least upper bound: /2.
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The reals are uncountable

The set of reals R is uncountable.

Proof of Cantor Diagonalization

@ Suppose on the contrary that R is countable.

O
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@ Suppose on the contrary that R is countable.

@ Then there is an enumeration of the reals {xg, x1, ...}, and we
express them as decimal expansions.

© Construct a new x which differs from x, in the n-th digit.

@ To avoid a problem with the equivalence of 9 recurring and 0, we
change the digits d in the range 0 — 7 to d + 1, and the digits 8
and 9 to 3 and 4 respectively.
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The reals are uncountable

The set of reals R is uncountable.

Proof of Cantor Diagonalization

@ Suppose on the contrary that R is countable.

@ Then there is an enumeration of the reals {xg, x1, ...}, and we
express them as decimal expansions.

Construct a new x which differs from x, in the n-th digit.

To avoid a problem with the equivalence of 9 recurring and 0, we
change the digits d in the range 0 — 7 to d + 1, and the digits 8
and 9 to 3 and 4 respectively.

Thus x # x,, for any n, which is a contradiction.

Thus the reals are uncountable.

©0

O
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The reals are not computable

There exist real numbers which cannot be represented on a computer.

Proof

There are countably many computer programs. There are uncountably
many real numbers. Therefore some real numbers cannot be
represented on any computer, no matter how much resource we have.

O
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Computer Numbers

@ There are two kinds of numbers provided by computer hardware:
integer types and floating point types.
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Computer Numbers

@ There are two kinds of numbers provided by computer hardware:
integer types and floating point types.

@ Unfortunately neither of them is any of the systems we've already
seen!
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Integer Types and their errors

@ The integer types are limited to a small number of bits — usually
32-bits or 64-bits, and the operations usually wrap-around.
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Integer Types and their errors

@ The integer types are limited to a small number of bits — usually
32-bits or 64-bits, and the operations usually wrap-around.

@ A wrap-around occurs when an operation exceeds the number of bits
available to hold the number; for example it usually comes as a
surprise that in 32-bit signed integer:

2000000000 + 2000000000 = —294967296

@ This behaviour is the cause of many bugs in computer programs!
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Floating Point Types and their errors

@ Each floating point type is a subset of the rational numbers Q.
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Floating Point Types and their errors

@ Each floating point type is a subset of the rational numbers Q.

@ The most frequently encountered types are float with 23-bit
mantissa, and 8-bit exponent, and double with 53-bit mantissa, and
10-bit exponent.

@ It often comes as a surprise that floating point numbers do not have
an associative addition operation, i.e. it is sometimes possible that:

(x+ty)+z#x+(y+2)

@ To see this, take x = 1e30, y = —x, and z = 1e — 30.

@ Then x+ y =0 and y + z = y; the second result occurring because
there insufficient bits in the mantissa to hold all bits accurately.

@ This behaviour is cancellation, and is also the cause of many bugs in
computer programs!
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A practical problem with Floating Point

@ Consider calculating a dot-product between two vectors of double
floating point numbers.
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A practical problem with Floating Point

@ Consider calculating a dot-product between two vectors of double
floating point numbers.

o Naively, we could multiply the numbers pairwise and then sum them.

@ The problem with doing this is that we could get the same
cancellation effect we saw previously.

@ To solve this problem we could sort the pairwise terms into ascending
order by their absolute value.

@ This makes dot-product (and therefore matrix multiplication) much
more expensive.
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Numerical Analysis

@ The discipline of Numerical Analysis was invented by Wilkinson when
it became apparent that early numeric computer programs on the
Manchester Mark 1 were delivering wrong answers!
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Numerical Analysis

@ The discipline of Numerical Analysis was invented by Wilkinson when
it became apparent that early numeric computer programs on the
Manchester Mark 1 were delivering wrong answers!

o | usually advise my computer science students that they are not
qualified to use floating point types.

@ Usually numerical analysts are not experts in software engineering
either, which is something of a conundrum!
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Are the computable reals an answer?

@ Can we use the computable reals instead of the reals?
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Are the computable reals an answer?

@ Can we use the computable reals instead of the reals?

@ Using computable real implementations such as ERA, we can add,
subtract, multiply divide by non-zero quantities, take exponentials and
logs (of positive quatities), etc.

@ The problem with the computable reals is that there is no comparison
operation: we cannot determine in a finite time whether x > 0, or
more generally whether x > y.
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Hybrid Systems

@ A hybrid dynamical system is one in which there are a mixture of
interacting continuously varying real-valued variables interacting with
discrete boolean signals.
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Hybrid Systems

@ A hybrid dynamical system is one in which there are a mixture of
interacting continuously varying real-valued variables interacting with
discrete boolean signals.

@ Clearly a system of very simple neurons communicating with spikes is
a hybrid system.

@ In general such a system cannot be computable, as there is a need to
determine when a membrane voltage has exceeded it's threshold.

@ Unless a hybrid system is degenerate (i.e. is entirely continuous or
entirely discrete) it will almost inevitably be chaotic.

@ A chaotic system is one in which the final state depends on an
excessively precise initial state.

@ One quick way to gauge whether a system might be chaotic is to
make small pertubations to the initial condition, and see if there is a
large effect on the output.
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Philosophical Issues

@ So is it still possible to model a brain using a computer
simulation?
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Philosophical Issues

@ So is it still possible to model a brain using a computer
simulation?

@ Yes. The limits on computability are simply a reminder that the
simulation is an approximate model of the system.

@ Can physical models like BrainScales solve this problem?

@ There is a similar problem making accurate comparator circuits, so
these systems too, are also approximate models of the system.
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Conclusion

At the end of this lecture you will:

@ Be aware of different sorts of mathematical arithemtic systems.
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Conclusion

At the end of this lecture you will:

Be aware of different sorts of mathematical arithemtic systems.
Have a feeling for countability arguments.

Be aware of the practical problems that occur when using the usual
numbers provided on a computer.

Be aware of the issues and limitations arising when using numeric
simulations.

Be alert to the issue of chaotic behaviour, which we might expect to
be common in brain simulation.

David Lester Lecture 5 2017 31/31





