

Parkinson's disease: Synuclein aggregates travel from the gut to the brain through the vagus nerve

The natural history of PD

We are diagnosing PD very late in the course of the disease

Diagnosing carcinoma based on clinical signs and symptoms

Ga68-PSMA

biological makers for early stages of the disease

MRI of the prostate

Mammography

Parkinson's disease has a long "incubation period" with non-specific signs

Years from diagnosis

-20

-10

O

Behavior during dream state

constipation

Decrease in olfactory perception

impotence

Depression

pain

Parkinson's disease

Movement

Disorders

PD Diagnosis

Deterioration in brain function

Biological Markers

"Living the dream"

Smell Test

UPSIT- University of Pittsburg Smell Identification Test

Walking as a marker for central and peripheral nervous system function

Supraspinal control of walking

January 2011

Gait Alterations in Healthy Carriers of the LRRK2 G2019S Mutation

Mirelman A, Gurevich T, Giladi N, Bar-Shira A, Orr Urtreger A, Hausdorff J

Arm swing-PD compared to Healthy

Patient with PD (age =53)

Arm swing asymmetry during walking as a marker for population at risk

Non carriers = 61, carriers = 62

Mirelman et al, submitted

DaT Scans

Quantification of DaT uptake using VBM analysis

p<0.05; Corrected for multiple comparison

LC = First-degree relatives, carriers NC = First-degree relatives, non carriers

Non Carriers > carriers

Artzi et al. in preparation

Imaging of the brain

PET tracers under evaluation for HD

PET tracers being evaluated or under consideration

Target	PET Ligand	Localization	Preclinical Evaluation Status	Clinical Evaluation Status
D1 receptor	11C-NNC112	Basal ganglia/cortex	Studies completed (uPET)	Currently no planned studies
D2 receptor	11C-raclopride	Striatum/cortex	Studies completed (uPET)	Studies completed and ongoing
PDE10A enzyme	18F-MNI659/ [11C]IMA107	Basal ganglia	Studies completed (uPET)	Studies ongoing and planned
CB1 receptor	18F-FMPEP-d2/ [11C]MePPEP	Basal ganglia/cortex	Studies ongoing (ARG)	Studies completed and planned
5HT2a receptor	11C-MDL100097	Basal ganglia/cortex	Studies completed (uPET)	Studies planned
H3 receptor	11C-GSK189254/ [11C]MK-8278	Basal ganglia/cortex	Studies ongoing (ARG)	Studies planned
Glucose uptake	18F-FDG	Cortex and subcortical	Limited profiling (uPET)	Studies completed and planned
GABA-A receptor	11C-Flumazenil	Basal ganglia/cortex	Studies planned (ARG)	Currently no planned studies
mGluR5 receptor	18F-FPEB	Basal ganglia/cortex	Studies planned (uPET)	Currently no planned studies
M1 receptor	11C-GSK1034702	Basal ganglia/cortex	Currently no planned studies	Currently no planned studies
5HT1a receptor	11C-WAY100635	Cortex	Currently no planned studies	Currently no planned studies
NK1 receptor	18F-FE-SPA-RQ	Basal ganglia/cortex	Currently no planned studies	Currently no planned studies

Measuring functional reserve, compensatory mechanisms

Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism

Bart F. L. van Nuenen, ^{1,2} Rick C. Helmich, ^{1,2} Murielle Ferraye, ² Avner Thaler, ³ Talma Hendler, ³ Avi Orr-Urtreger, ⁴ Anat Mirelman, ³ Susan Bressman, ⁵ Karen S. Marder, ⁶ Nir Giladi, ³ Bart P. C. van de Warrenburg, ¹ Bastiaan R. Bloem ¹ and Ivan Toni ² on behalf of the *LRRK2* Ashkenazi Jewish Consortium ¹*

Foot response (left / right big toe)

G2019S mutation carriers use the brain differently to solve motor imagery problems

Huntington's disease progression

Biological markers of disease state

What initiates the neurodegenerative process?

Understanding the cause can lead to preventive therapy

Alzheimer's disease is NOT just accelerated aging

Where can we intervene and prevent neurodegenerative diseases?

Factors contributing to the development of neurodegenerative diseases

Environment and lifestyle

Genetic contribution to Parkinson's disease

Genetics of Parkinson's diseaseThe Ashkenazi Jews story

In Ashkenazi Jews

The story of the family members: The Brin Family's story

Genetic research in Tel-Aviv Parkinson's disease

1520 patients with Parkinson's disease

1100 Ashkenazim

450 healthy first degree relatives of patients with Parkinson who carry a known mutation in the *GBA* or *LRRK2* genes

The pyramid of Parkinson's disease From population at risk to diagnosed disease

Every year a number of healthy individuals become sick

The goal: Following a population at risk for developing PD and learning about the mode of progression and conversion

The method: Examine patients and healthy relatives who carry the PD related mutations, in order to identify early biological markers for the development of the disease.

Recommendations for minimizing the chance of getting Parkinson's disease and dementia for population at risk

- Exercise
- Intellectual stimulation
- Social interaction
- Balance the risk factors for Atherosclerosis
- Sleep well
- Drink coffee
- Avoid becoming overweight
- Avoid depression
- Medications?? Anti-inflammatory?
- Mediterranean Diet

There's a lot that can be done!!!

A healthy way to activate neutrotrophic factors that promote regeneration of brain cells

Prescription

28/2/2016

Name: Israel Israeli

Age: 45

Medication: Aerobic physical

activity

Dosage: 5 times a week - 60 minutes

(200-300 minutes a week)

Notes: 50% aerobic activity, 25%

resistance, 25% stretching

Nir Giladi, MD

Nir Gisadi

License No. 12345

An entire brain is developed in 9 months the product of trophic factors

Trophic factors that promote neuronal, synaptic and vascular regeneration

Trophic factors produced by skeletal muscles and the liver promote neuronal-regeneration

Novel therapeutic approaches for stopping neurodegeneration

- Vaccines
- Gene silencing\ RNA silencing
- Enzymatic activity promoting substances small molecules
- Stem cell
- Administration of trophic factors that promote regeneration

In development:

Dozens of medications and vaccines for the stopping or prevention of Parkinson's disease, Alzheimer's disease and Huntington's disease

Gene silencing – prevention of toxic protein production

Antisense Oligonucleotide Therapy

The goal: Prevention

The team

Neurology Department:

Nir Giladi

Avner Thaler

Noa Bregman

Meir Kestenbaum

Avi Gadoth

Tamara Shiner

Movement Disorders Unit:

Tanya Gurevich

Eti Shimoni

Michal Shtaigman

Marina Grumberg

Michaela Victor

Ora Assias

Hertzel Shabtai

Yaacov Balash

Ariella Hillel

Sharon Peleg-Nesher

Brain Imaging Center:

Talma Hendler

Dafna Ben Basat

Moran Artzi

CMCM:

Jeff Hausdorff

Anat Mirelman

Aner Weiss

Hagar Bernad

Eran Gazit

Talia Herman

Inbal Maidan

Nuclear Medicine:

Einat Even Sapir

Hedva Lerman

Adva Cohen

MJFF-AJ Consortium:

CU- Karen Marder

BI-MS-Susan Bressman

Yale U- Ken Marek

Harvard - Laurie Ozelius

MJFF - Gait Consortium:

Jan Aasly-Trondheim, Norway Daniela Berg- Tubingen, Germany Eduardo Tolosa- Barcelona, Spain Bill Chen- Beijing, China

Genetic Institute R&D Lab:

Avi Orr Urtreger

Anat Bar Shira

Ziv Gan-Or

Mali Gana Weiss

Orly Goldstein

Merav Kedmi

Dalit Barel

Hila Kobo

Omri Nayshool

Idan Amshalom

Liron Rozenkrantz

Dina Pavzner

Dvir Dahary

Radboud Univ. - Holland:

Bas Bloem

Rick Helmlich

Bart Van Neunen

Ivan Toni

<u>Supported by:</u> MJFF Foundation, TASMC excellence grant, Israel Science Foundation, Ministry of Health, Kahn Foundation, Wolfson Foundation

Patients and relatives are waiting...

el Aviv Medical Center

Thank you

