
Lecture 1: Computational Complexity

David Lester

2017

David Lester Lecture 4 2017 1 / 27

Outline

1 Learning Outcomes

2 Defining the while programming language

3 Average-Case and Worst-Case Analysis

4 Order of Growth

5 Properties of “Big-Oh”

6 Lower Bounds

David Lester Lecture 4 2017 2 / 27

Learning Outcomes

At the end of this week’s material you will:

Be familiar with the simple programming language.

Be familiar with the methods used to analyze the efficiency of
algorithms written in an imperative programming language;

Understand the ‘Big-Oh’ notation (and its relatives Ω and Θ);

Understand the relationship between these ideas.

David Lester Lecture 4 2017 3 / 27

Learning Outcomes

At the end of this week’s material you will:

Be familiar with the simple programming language.

Be familiar with the methods used to analyze the efficiency of
algorithms written in an imperative programming language;

Understand the ‘Big-Oh’ notation (and its relatives Ω and Θ);

Understand the relationship between these ideas.

David Lester Lecture 4 2017 3 / 27

Learning Outcomes

At the end of this week’s material you will:

Be familiar with the simple programming language.

Be familiar with the methods used to analyze the efficiency of
algorithms written in an imperative programming language;

Understand the ‘Big-Oh’ notation (and its relatives Ω and Θ);

Understand the relationship between these ideas.

David Lester Lecture 4 2017 3 / 27

Learning Outcomes

At the end of this week’s material you will:

Be familiar with the simple programming language.

Be familiar with the methods used to analyze the efficiency of
algorithms written in an imperative programming language;

Understand the ‘Big-Oh’ notation (and its relatives Ω and Θ);

Understand the relationship between these ideas.

David Lester Lecture 4 2017 3 / 27

Defining while

A grammar for while:

S ::= x := a | skip | S1; S2 | if b then S1 else S2 | while b do S
b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

a ::= x | n | a1 + a2 | a1 − a2 | a1 × a2

David Lester Lecture 4 2017 4 / 27

Non-terminals: S , b and a. These represent Statements (Stm),
Boolean Expressions (BExp), and Arithmetic Expressions (AExp)
respectively.

Terminals: keywords (while etc.), symbols (+, etc.) and variables x
and numerals n.

Any of these symbols can be dashed (x ′) or subscripted (S1). The
numerals n can be thought of as strings of digits.

David Lester Lecture 4 2017 5 / 27

Non-terminals: S , b and a. These represent Statements (Stm),
Boolean Expressions (BExp), and Arithmetic Expressions (AExp)
respectively.

Terminals: keywords (while etc.), symbols (+, etc.) and variables x
and numerals n.

Any of these symbols can be dashed (x ′) or subscripted (S1). The
numerals n can be thought of as strings of digits.

David Lester Lecture 4 2017 5 / 27

Non-terminals: S , b and a. These represent Statements (Stm),
Boolean Expressions (BExp), and Arithmetic Expressions (AExp)
respectively.

Terminals: keywords (while etc.), symbols (+, etc.) and variables x
and numerals n.

Any of these symbols can be dashed (x ′) or subscripted (S1). The
numerals n can be thought of as strings of digits.

David Lester Lecture 4 2017 5 / 27

Extensions

We will feel free to extend this very simple langauge with extensions
such as array expressions and assignments.

We will also feel free to use for-next to rerpresent some while-loops.

David Lester Lecture 4 2017 6 / 27

Extensions

We will feel free to extend this very simple langauge with extensions
such as array expressions and assignments.

We will also feel free to use for-next to rerpresent some while-loops.

David Lester Lecture 4 2017 6 / 27

Matrix Addition: a reminder

We can write a matrix addition program to add two n × n matrices A and
B and place the result in C as follows.

for i := 1 to n do

for j := 1 to n do

C [i , j] = A[i , j] + B[i , j]

David Lester Lecture 4 2017 7 / 27

Analysis

We count the number of additions for input matrices of size n × n.

We begin with the inner loop (which manipulates variable j): this
executes n times, and thus performs n additions.

Next we observe that the outer loop (which manipulates variable i)
also executes n times. This loop incorporates the one for j and thus
performs n × n additions in total.

David Lester Lecture 4 2017 8 / 27

Analysis

We count the number of additions for input matrices of size n × n.

We begin with the inner loop (which manipulates variable j): this
executes n times, and thus performs n additions.

Next we observe that the outer loop (which manipulates variable i)
also executes n times. This loop incorporates the one for j and thus
performs n × n additions in total.

David Lester Lecture 4 2017 8 / 27

Analysis

We count the number of additions for input matrices of size n × n.

We begin with the inner loop (which manipulates variable j): this
executes n times, and thus performs n additions.

Next we observe that the outer loop (which manipulates variable i)
also executes n times. This loop incorporates the one for j and thus
performs n × n additions in total.

David Lester Lecture 4 2017 8 / 27

Average-Case and Worst-Case Analysis

Suppose that we need to find the index of the first element in a
non-empty one-dimensional array bigger than m. The following
program performs the task.

index := 0; i := 1; while i ≤ n ∧ A[i] ≤ m do

i := i + 1; index := i

If we are unlucky, the required element is A[n] and we must loop
through all of the elements of A.
This is the worst case.
Alternatively, maybe the first element is acceptable. Then we execute
the loop test just once.
This is the best case.
Depending on the precise distribution of the elements of the matrix A
we may be able to give an average case.
For example if the elements of A are independently normally
distributed with mean m and a non-zero variance, and are sorted into
ascending order, we would expect to have to search just half the
elements of A before we found a value bigger than m.

David Lester Lecture 4 2017 9 / 27

Average-Case and Worst-Case Analysis

Suppose that we need to find the index of the first element in a
non-empty one-dimensional array bigger than m. The following
program performs the task.

index := 0; i := 1; while i ≤ n ∧ A[i] ≤ m do

i := i + 1; index := i

If we are unlucky, the required element is A[n] and we must loop
through all of the elements of A.
This is the worst case.

Alternatively, maybe the first element is acceptable. Then we execute
the loop test just once.
This is the best case.
Depending on the precise distribution of the elements of the matrix A
we may be able to give an average case.
For example if the elements of A are independently normally
distributed with mean m and a non-zero variance, and are sorted into
ascending order, we would expect to have to search just half the
elements of A before we found a value bigger than m.

David Lester Lecture 4 2017 9 / 27

Average-Case and Worst-Case Analysis

Suppose that we need to find the index of the first element in a
non-empty one-dimensional array bigger than m. The following
program performs the task.

index := 0; i := 1; while i ≤ n ∧ A[i] ≤ m do

i := i + 1; index := i

If we are unlucky, the required element is A[n] and we must loop
through all of the elements of A.
This is the worst case.
Alternatively, maybe the first element is acceptable. Then we execute
the loop test just once.
This is the best case.

Depending on the precise distribution of the elements of the matrix A
we may be able to give an average case.
For example if the elements of A are independently normally
distributed with mean m and a non-zero variance, and are sorted into
ascending order, we would expect to have to search just half the
elements of A before we found a value bigger than m.

David Lester Lecture 4 2017 9 / 27

Average-Case and Worst-Case Analysis

Suppose that we need to find the index of the first element in a
non-empty one-dimensional array bigger than m. The following
program performs the task.

index := 0; i := 1; while i ≤ n ∧ A[i] ≤ m do

i := i + 1; index := i

If we are unlucky, the required element is A[n] and we must loop
through all of the elements of A.
This is the worst case.
Alternatively, maybe the first element is acceptable. Then we execute
the loop test just once.
This is the best case.
Depending on the precise distribution of the elements of the matrix A
we may be able to give an average case.

For example if the elements of A are independently normally
distributed with mean m and a non-zero variance, and are sorted into
ascending order, we would expect to have to search just half the
elements of A before we found a value bigger than m.

David Lester Lecture 4 2017 9 / 27

Average-Case and Worst-Case Analysis

Suppose that we need to find the index of the first element in a
non-empty one-dimensional array bigger than m. The following
program performs the task.

index := 0; i := 1; while i ≤ n ∧ A[i] ≤ m do

i := i + 1; index := i

If we are unlucky, the required element is A[n] and we must loop
through all of the elements of A.
This is the worst case.
Alternatively, maybe the first element is acceptable. Then we execute
the loop test just once.
This is the best case.
Depending on the precise distribution of the elements of the matrix A
we may be able to give an average case.
For example if the elements of A are independently normally
distributed with mean m and a non-zero variance, and are sorted into
ascending order, we would expect to have to search just half the
elements of A before we found a value bigger than m.David Lester Lecture 4 2017 9 / 27

Important

Be very careful about assuming lists are random if they are ordered.
performance.

Very Important Be very careful about assuming your data is
random. For example, it is very easy to repeatedly sort lists which are
already partly or fully sorted.

David Lester Lecture 4 2017 10 / 27

Important

Be very careful about assuming lists are random if they are ordered.
performance.

Very Important Be very careful about assuming your data is
random. For example, it is very easy to repeatedly sort lists which are
already partly or fully sorted.

David Lester Lecture 4 2017 10 / 27

Order of Growth

On different machines, we will get a different performance for a
particular algorithm, but unless it has a very strange instruction set –
say a one cycle quicksort instruction – there will be a relationship
between the size of the input and the length of time taken to run the
algorithm.

David Lester Lecture 4 2017 11 / 27

Observations

Observation

This observation allows us to ignore the constant scaling factor for
the time taken.

David Lester Lecture 4 2017 12 / 27

Example

Example

Consider the two functions, each of type N→ N:

f (n) = n
g(n) = n2

It does not matter which value of n we select, it will always be the
case that n ≤ n2. We say that n2 dominates n.

David Lester Lecture 4 2017 13 / 27

Example

Example

Suppose that the two functions (again N→ N) this time are:

f (n) = 100n
g(n) = n2

Now, if n < 100 then f (n) > g(n). For example at n = 10 we get
f (n) = 1000 and g(n) = 100. But eventually g(n) will be bigger
than f (n). In this case “eventually” means for any value of
n > 100; for other functions this may differ.

David Lester Lecture 4 2017 14 / 27

Eventually Dominating Functions

Definition

We say the function g eventually dominates function f , whenever
there exists k : N such that:

∀ (n : N). n > k ⇒ g(n) > f (n)

In other words, whenever n is greater than k, and we have
g(n) > f (n), then we can say that g eventually dominates f .

Observation

This observation allows us to ignore functions that are eventually
dominated by another function.

David Lester Lecture 4 2017 15 / 27

Puting Observations 4.1 and 4.5 together we have arrived at the following
useful conclusion for polynomial complexities: if
T (n) = aknk + ak−1nk−1 + · · ·+ a2n2 + a1n + a0 then it will eventually be
dominated by Cnk , for some C > 0. If, in addition, we do not care about
the scaling constant we can simple talk about the function nk .

Definition

If f , g : N→ R≥0 and f ∈ O(g), then there exists k ∈ N and C > 0
such that for all n > k :

f (n) ≤ Cg(n)

David Lester Lecture 4 2017 16 / 27

Properties of “Big-Oh”

In this section we will demonstrate some of the properties of the notation.
You should be aware that many people are informal and sloppy in their use
of the notation, so be prepared for this. In particular, instead of writing
the function properly you will see things such as O(1) and O(n). These
are actually shorthand for the polynomial functions f (n) = 1 and f (n) = n
respectively.

David Lester Lecture 4 2017 17 / 27

Reflexive Property

Lemma

f ∈ O(f)

Proof

Pick k = 0 and C = 1. Then for all n ∈ N:

f (n) = Cf (n) ≤ Cf (n)

�

David Lester Lecture 4 2017 18 / 27

Let us next show that the constant functions O(1) are a strict subset of
the linear functions O(n).

Lemma

O(1) ⊂ O(n)

i.e. O(1) is a strict subset of O(n).

The proof is in the notes.

David Lester Lecture 4 2017 19 / 27

Lemma

Suppose g(n) is a polynomial, i.e.

g(n) = aknk + ak−1nk−1 + · · ·+ a2n2 + a1n + a0

Provided that the leading coefficient ak > 0, then the set O(g) is the
same set as O(nk)

Lemma

O(1) ⊂ O(log n) ⊂ O(n)

(In Computer Science we usually take log(n) to be log2(n).)

David Lester Lecture 4 2017 20 / 27

Lower Bounds

Related to the“Big-Oh” notation: is the “Big-Omega” notation.

In saying f ∈ Ω(g) we are saying that the function f eventually
dominates g ; i.e. g is a lower bound to f .

David Lester Lecture 4 2017 21 / 27

Lower Bounds

Related to the“Big-Oh” notation: is the “Big-Omega” notation.

In saying f ∈ Ω(g) we are saying that the function f eventually
dominates g ; i.e. g is a lower bound to f .

David Lester Lecture 4 2017 21 / 27

Definition of Ω(f)

Definition

If f , g : N→ R≥0 and f ∈ Ω(g), then there exists k ∈ N and C > 0
such that for all n > k :

Cg(n) ≤ f (n)

David Lester Lecture 4 2017 22 / 27

Important

Algorithms have an upper bound on their execution time (“quicksort
is average-case O(n log n)”); and

Problems have a lower bound (“sorting must be Ω(n) since we must
compare each element at least once”).

David Lester Lecture 4 2017 23 / 27

Important

Algorithms have an upper bound on their execution time (“quicksort
is average-case O(n log n)”); and

Problems have a lower bound (“sorting must be Ω(n) since we must
compare each element at least once”).

David Lester Lecture 4 2017 23 / 27

Algorithmic Gaps

If the best algorithm for a problem has the same as the problem
complexity then we have – in some sense – a near ideal program.

Alternatively – and much more common – there is an Algorithmic Gap
in that the best algorithm is worse than the problem’s lower bound.

David Lester Lecture 4 2017 24 / 27

Algorithmic Gaps

If the best algorithm for a problem has the same as the problem
complexity then we have – in some sense – a near ideal program.

Alternatively – and much more common – there is an Algorithmic Gap
in that the best algorithm is worse than the problem’s lower bound.

David Lester Lecture 4 2017 24 / 27

Binary Search

Search is an example where we know that there is no algorithmic gap.

To search a telephone directory, we translate the name to an integer,
e.g. “Dave” would become 1, 147, 237, 989.

Using while we set variable x to 1147237989 (the name).

To return the answer we set variable y to 55726, the phone number.

David Lester Lecture 4 2017 25 / 27

Binary Search

Search is an example where we know that there is no algorithmic gap.

To search a telephone directory, we translate the name to an integer,
e.g. “Dave” would become 1, 147, 237, 989.

Using while we set variable x to 1147237989 (the name).

To return the answer we set variable y to 55726, the phone number.

David Lester Lecture 4 2017 25 / 27

Binary Search

Search is an example where we know that there is no algorithmic gap.

To search a telephone directory, we translate the name to an integer,
e.g. “Dave” would become 1, 147, 237, 989.

Using while we set variable x to 1147237989 (the name).

To return the answer we set variable y to 55726, the phone number.

David Lester Lecture 4 2017 25 / 27

Binary Search

Search is an example where we know that there is no algorithmic gap.

To search a telephone directory, we translate the name to an integer,
e.g. “Dave” would become 1, 147, 237, 989.

Using while we set variable x to 1147237989 (the name).

To return the answer we set variable y to 55726, the phone number.

David Lester Lecture 4 2017 25 / 27

Binary Search (ctd.)

Somewhere in the program we must have an assignment:

y := 55726

Before we get to this assignment, we must select a path: this involves
the use of if then else construct.

To minimize the number of comparisons, we need to make the first
comparison split the space into 2 equal parts.

We repeat this procedure, and after 20 comparisons we can have over
1, 000, 000 possible telephone numbers stored.

For searching a telephone directory, the time-complexity of the best
known algorithm is O(log n), which is the same as the lower bound
for the problem which is Ω(log n).

David Lester Lecture 4 2017 26 / 27

Binary Search (ctd.)

Somewhere in the program we must have an assignment:

y := 55726

Before we get to this assignment, we must select a path: this involves
the use of if then else construct.

To minimize the number of comparisons, we need to make the first
comparison split the space into 2 equal parts.

We repeat this procedure, and after 20 comparisons we can have over
1, 000, 000 possible telephone numbers stored.

For searching a telephone directory, the time-complexity of the best
known algorithm is O(log n), which is the same as the lower bound
for the problem which is Ω(log n).

David Lester Lecture 4 2017 26 / 27

Binary Search (ctd.)

Somewhere in the program we must have an assignment:

y := 55726

Before we get to this assignment, we must select a path: this involves
the use of if then else construct.

To minimize the number of comparisons, we need to make the first
comparison split the space into 2 equal parts.

We repeat this procedure, and after 20 comparisons we can have over
1, 000, 000 possible telephone numbers stored.

For searching a telephone directory, the time-complexity of the best
known algorithm is O(log n), which is the same as the lower bound
for the problem which is Ω(log n).

David Lester Lecture 4 2017 26 / 27

Binary Search (ctd.)

Somewhere in the program we must have an assignment:

y := 55726

Before we get to this assignment, we must select a path: this involves
the use of if then else construct.

To minimize the number of comparisons, we need to make the first
comparison split the space into 2 equal parts.

We repeat this procedure, and after 20 comparisons we can have over
1, 000, 000 possible telephone numbers stored.

For searching a telephone directory, the time-complexity of the best
known algorithm is O(log n), which is the same as the lower bound
for the problem which is Ω(log n).

David Lester Lecture 4 2017 26 / 27

Binary Search (ctd.)

Somewhere in the program we must have an assignment:

y := 55726

Before we get to this assignment, we must select a path: this involves
the use of if then else construct.

To minimize the number of comparisons, we need to make the first
comparison split the space into 2 equal parts.

We repeat this procedure, and after 20 comparisons we can have over
1, 000, 000 possible telephone numbers stored.

For searching a telephone directory, the time-complexity of the best
known algorithm is O(log n), which is the same as the lower bound
for the problem which is Ω(log n).

David Lester Lecture 4 2017 26 / 27

Conclusion

We have introduced a very simple imperative programming language.

We have seen how to analyse simple programs with loops and give the
complexity.

We have discussed algorithmic complexity, and why it is useful.

We have introduced lower bounds for problems and discussed
algorithmic gaps.

David Lester Lecture 4 2017 27 / 27

Conclusion

We have introduced a very simple imperative programming language.

We have seen how to analyse simple programs with loops and give the
complexity.

We have discussed algorithmic complexity, and why it is useful.

We have introduced lower bounds for problems and discussed
algorithmic gaps.

David Lester Lecture 4 2017 27 / 27

Conclusion

We have introduced a very simple imperative programming language.

We have seen how to analyse simple programs with loops and give the
complexity.

We have discussed algorithmic complexity, and why it is useful.

We have introduced lower bounds for problems and discussed
algorithmic gaps.

David Lester Lecture 4 2017 27 / 27

Conclusion

We have introduced a very simple imperative programming language.

We have seen how to analyse simple programs with loops and give the
complexity.

We have discussed algorithmic complexity, and why it is useful.

We have introduced lower bounds for problems and discussed
algorithmic gaps.

David Lester Lecture 4 2017 27 / 27

