Skip to main content
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler

This video gives a brief introduction to Neuro4ML's lessons on neuromorphic computing - the use of specialized hardware which either directly mimics brain function or is inspired by some aspect of the way the brain computes. 

Difficulty level: Intermediate
Duration: 3:56
Speaker: : Dan Goodman

In this lesson, you will learn in more detail about neuromorphic computing, that is, non-standard computational architectures that mimic some aspect of the way the brain works. 

Difficulty level: Intermediate
Duration: 10:08
Speaker: : Dan Goodman

This video provides a very quick introduction to some of the neuromorphic sensing devices, and how they offer unique, low-power applications.

Difficulty level: Intermediate
Duration: 2:37
Speaker: : Dan Goodman
Course:

This lecture covers modeling the neuron in silicon, modeling vision and audition, and sensory fusion using a deep network. 

Difficulty level: Beginner
Duration: 1:32:17
Speaker: : Shih-Chii Liu

This lesson presents a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Intermediate
Duration: 21:15
Speaker: : Tadashi Yamazaki

This lesson gives an overview of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.

Difficulty level: Beginner
Duration: 41:57
Speaker: : Giacomo Indiveri

Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.

Difficulty level: Beginner
Duration: 20:39
Speaker: : Giacomo Indiveri

The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.

Difficulty level: Intermediate
Duration: 19:57

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course. 

Difficulty level: Intermediate
Duration: 5:58
Speaker: : Dan Goodman

This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, Understanding Neural Networks.

Difficulty level: Intermediate
Duration: 2:43
Speaker: : Marcus Ghosh
Course:

This lecture covers the description and characterization of an input-output relationship in a information-theoretic context. 

Difficulty level: Beginner
Duration: 1:35:33

This lesson is part 1 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

This lesson is part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons. 

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks. 

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout

This lesson continues discussing properties of neural oscillations and networks. 

Difficulty level: Intermediate
Duration: 1:31:57
Speaker: : Bard Ermentrout

In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Bard Ermentrout

This lesson provides a continued discussion and characterization of coupled oscillators. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : Bard Ermentrout