This lecture covers an introduction to connectomics, and image processing tools for the study of connectomics.
This lecture covers acquisition techniques, the physics of MRI, diffusion imaging, prediction using fMRI.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.
Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.
Investigating the structure of synapses with electron microscopy.
Introductory presentation on how data science can help with scientific reproducibility.
2nd part of the lecture. This lecture will discuss how understanding and applying simple neuroanatomical rules, one can localize the damage along the neuroaxis, the first crucial step toward making the correct clinical diagnosis and initiating treatment.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
The composition of the cell membrane.
Spatiotemporal dynamics of the membrane potential.
Action potential initiation and propagation.
Synaptic transmission and neurotransmitters
Neurotransmitter release in the presynaptic specialization.
Presynaptic short-term dynamics and plasticity.
Synaptic modulation through diffusing neurotransmitters.
Glutamatergic transmission.