Skip to main content
Course:

Longitudinal Online Research and Imaging System (LORIS) is a web-based data and project management software for neuroimaging research studies. It is an open source framework for storing and processing behavioural, clinical, neuroimaging and genetic data. LORIS also makes it easy to manage large datasets acquired over time in a longitudinal study, or at different locations in a large multi-site study.

Difficulty level: Beginner
Duration: 0:35
Speaker: : Samir Das

This talk covers the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC), a free one-stop-shop collaboratory for science researchers that need resources such as neuroimaging analysis software, publicly available data sets, or computing power.

Difficulty level: Beginner
Duration: 1:00:10
Speaker: : David Kennedy

In this lesson, you will learn about the Python project Nipype, an open-source, community-developed initiative under the umbrella of NiPy. Nipype provides a uniform interface to existing neuroimaging software and facilitates interaction between these packages within a single workflow.

Difficulty level: Intermediate
Duration: 1:25:05
Speaker: : Satrajit Ghosh

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12
Course:

BioImage Suite is an integrated image analysis software suite developed at Yale University. BioImage Suite has been extensively used at different labs at Yale since about 2001.

Difficulty level: Beginner
Duration: 01:47
Speaker: : BioImage Suite
Course:

Fibr is an app for quality control of diffusion MRI images from the Healthy Brain Network, a landmark mental health study that is collecting MRI images and other assessment data from 10,000 New York City area children. The purpose of the app is to train a computer algorithm to analyze the Healthy Brain Network dataset. By playing fibr, you are helping to teach the computer which images have sufficiently good quality and which images do not. 

Difficulty level: Beginner
Duration: 02:26
Speaker: : Ariel Rokem

This lesson provides an overview of the Miniscope project, explaining the motivation behind the how and why of Miniscope development, why Miniscopes may be useful for researchers, and the differences between previous and current versions.

Difficulty level: Beginner
Duration: 42:16
Speaker: : Daniel Aharoni

This lesson provides instruction on how to build a Miniscope and stream data, including an overview of the software involved.

Difficulty level: Beginner
Duration: 1:04:28

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below. 

Difficulty level: Beginner
Duration: 52:26

Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.

Difficulty level: Intermediate
Duration: 1:21:38
Speaker: : Dan Felsky

This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research. 

Difficulty level: Beginner
Duration: 57:52
Speaker: : Satrajit Ghosh