The workshop was designed to introduce all aspects of using Miniscopes, including basic principles of Miniscope design and imaging, how to build and attach a Miniscope, how to implant a GRIN lens for imaging deep structures, and how to analyze imaging data. It also covered the most recent developments in Miniscope technology and highlighted some of the best advances in this exciting and growing field. The event was organized by Daniel Aharoni, Denise Cai, and Tristan Shuman, and it was hosted at MetaCell's Workspace for Calcium Imaging Analysis.
This lesson is an overview of the Miniscope project. It will give motivation for why we have developed Miniscopes, how they've been developed, why they may be useful for researchers, and the differences between previous and current versions. While directly applicable to the UCLA Miniscope project, this information can be applied to most mainstream miniature microscopes, including both open source and commercially available models.
This lesson will go through the theory and practical techniques for implanting a GRIN lens for imaging in mice.
Learn how to build a Miniscope and stream data, including an overview of the software involved.
Serving as good refresher, Shawn Grooms explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.
This compilation is courtesy of freeCodeCamp.
Linear algebra is the branch of mathematics concerning linear equations such as linear functions and their representations through matrices and vector spaces. As such, it underlies a huge variety of analyses in the neurosciences. This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.
This lesson was created by RootMath.
This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.
This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.