Skip to main content

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron

This lecture will provide an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 45:29
Speaker: : Dafna Ben Bashat

This lecture will provide an overview of neuroimaging techniques and their clinical applications

Difficulty level: Beginner
Duration: 41:00
Speaker: : Dafna Ben Bashat

This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases

Difficulty level: Beginner
Duration: 1:02:29
Speaker: : Nir Giladi

A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.

Difficulty level: Beginner
Duration: 51:49

This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.

Difficulty level: Beginner
Duration: 37:51

How genetics can contribute to our understanding of psychiatric phenotypes.

Difficulty level: Beginner
Duration: 55:15
Speaker: : Sven Cichon

The lecture focuses on rationale for employing neuroimaging methods for movement disorders

Difficulty level: Beginner
Duration: 1:04:04
Speaker: : Bogdan Draganski

An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.

Difficulty level: Beginner
Duration: 45:47

Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 56:49

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go? This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.

Difficulty level: Beginner
Duration: 12:26
Speaker: : Camille Maumet

As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.

Difficulty level: Beginner
Duration: 13:16
Speaker: : Kelly Shen

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the processes, benefits, and challenges involved in designing, collecting, and sharing FAIR neuroscience datasets.

Difficulty level: Beginner
Duration: 11:35

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.

Difficulty level: Beginner
Duration: 12:06
Speaker: : Melanie Ganz

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.

Difficulty level: Beginner
Duration: 11:20
Speaker: : Elizabeth DuPre

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles.

 

This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. This lecture was part of the FAIR approaches for neuroimaging research session at the 2020 INCF Assembly.

Difficulty level: Beginner
Duration: 13:11
Speaker: : Gustav Nilsonne

Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics

 

This lecture covers self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.

Difficulty level: Beginner
Duration: 25:50
Speaker: : Eva Dyer

Estefany Suárez provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:22:18
Speaker: :