Skip to main content

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate
Duration: 1:09:33
Speaker: : Sean Hill

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity. 

Difficulty level: Beginner
Duration: 1:06:35
Speaker: : Laura Sikstrom

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate
Duration: 1:11:04
Speaker: : Etay Hay

This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.

Difficulty level: Beginner
Duration: 1:13:45

This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.

Difficulty level: Beginner
Duration: 58:03

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This lecture picks up from the previous lesson, providing an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 41:00
Speaker: : Dafna Ben Bashat

This lesson provides a basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.

Difficulty level: Beginner
Duration: 51:49

This lecture focuses on the rationale for employing neuroimaging methods for movement disorders.

Difficulty level: Beginner
Duration: 1:04:04
Speaker: : Bogdan Draganski

This lesson gives an introduction to simple spiking neuron models.

Difficulty level: Beginner
Duration: 48 Slides
Speaker: : Zubin Bhuyan

This lesson provides an introduction to simple spiking neuron models.

Difficulty level: Beginner
Duration: 48 Slides
Speaker: : Zubin Bhuyan

This presentation accompanies the paper entitled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data (see link below to download publication). 

Difficulty level: Beginner
Duration: 4:56

This lecture on model types introduces the advantages of modeling, provide examples of different model types, and explain what modeling is all about. 

Difficulty level: Beginner
Duration: 27:48
Speaker: : Gunnar Blohm

This lecture focuses on how to get from a scientific question to a model using concrete examples. We will present a 10-step practical guide on how to succeed in modeling. This lecture contains links to 2 tutorials, lecture/tutorial slides, suggested reading list, and 3 recorded Q&A sessions.

Difficulty level: Beginner
Duration: 29:52
Speaker: : Megan Peters

This lecture formalizes modeling as a decision process that is constrained by a precise problem statement and specific model goals. We provide real-life examples on how model building is usually less linear than presented in Modeling Practice I

Difficulty level: Beginner
Duration: 22:51
Speaker: : Gunnar Blohm

This lecture focuses on the purpose of model fitting, approaches to model fitting, model fitting for linear models, and how to assess the quality and compare model fits. We will present a 10-step practical guide on how to succeed in modeling. 

Difficulty level: Beginner
Duration: 26:46
Speaker: : Jan Drugowitsch

This lecture summarizes the concepts introduced in Model Fitting I and adds two additional concepts: 1) MLE is a frequentist way of looking at the data and the model, with its own limitations. 2) Side-by-side comparisons of bootstrapping and cross-validation.

Difficulty level: Beginner
Duration: 38.17
Speaker: : Kunlin Wei

This lecture provides an overview of the generalized linear models (GLM) course, originally a part of the Neuromatch Academy (NMA), an interactive online summer school held in 2020. NMA provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience". 

Difficulty level: Beginner
Duration: 33:58
Speaker: : Cristina Savin

This lecture further develops the concepts introduced in Machine Learning I. This lecture is part of the Neuromatch Academy (NMA), an interactive online computational neuroscience summer school held in 2020.

Difficulty level: Beginner
Duration: 29:30
Speaker: : I. Memming Park