Skip to main content

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate
Duration: 1:09:33
Speaker: : Sean Hill

The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.

Difficulty level: Beginner
Duration: 1:29:28

This lesson delves into the opportunities and challenges of telepsychiatry. While novel digital approaches to clinical research and care have the potential to improve and accelerate patient outcomes, researchers and care providers must consider new population factors, such as digital disparity. 

Difficulty level: Beginner
Duration: 1:20:28
Speaker: : Abhi Pratap

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate
Duration: 1:11:04
Speaker: : Etay Hay

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.

Difficulty level: Beginner
Duration: 1:13:45

This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.

Difficulty level: Beginner
Duration: 58:03

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

Introduction of the Foundations of Machine Learning in Python course - Day 01.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Beginner
Duration: 35:24
Speaker: : Elena Trunz

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 34:52
Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 57.45
Speaker: : Moritz Wolter

Support Vector Machines -  Day 06 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 53.39
Speaker: : Elena Trunz

Decision Trees and Random Forests -  Day 07 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 1:15:39
Speaker: : Elena Trunz

Clustering and Density Estimation -  Day 08 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 59:35
Speaker: : Elena Trunz

Dimensionality Reduction -  Day 09 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 51:02
Speaker: : Elena Trunz

Introduction to Neural Networks -  Day 10 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 54:12
Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks  -  Day 11 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

Initialization, Optimization, and Regularization  -  Day 12 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation  -  Day 13 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 16:45
Speaker: : Moritz Wolter

Sequence Processing -  Day 15 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 47:45
Speaker: : Moritz Wolter