Skip to main content

Gael Varoquaux presents some advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:17:14
Speaker: :

This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.

Difficulty level: Beginner
Duration: 02:09:22
Speaker: :

Dr. Guangyu Robert Yang describes how Recurrent Neural Networks (RNNs) trained with machine learning techniques on cognitive tasks have become a widely accepted tool for neuroscientists. In comparison to traditional computational models in neuroscience, RNNs can offer substantial advantages at explaining complex behavior and neural activity patterns. Their use allows rapid generation of mechanistic hypotheses for cognitive computations. RNNs further provide a natural way to flexibly combine bottom-up biological knowledge with top-down computational goals into network models. However, early works of this approach are faced with fundamental challenges. In this talk, Dr. Guangyu Robert Yang discusses some of these challenges, and several recent steps that we took to partly address them and to build next-generation RNN models for cognitive neuroscience.​

Difficulty level: Beginner
Duration: 00:51:12
Speaker: :

In this presentation by the OHBM OpenScienceSIG, Tom Shaw and Steffen Bollmann cover how containers can be useful for running the same software on different platforms and sharing analysis pipelines with other researchers. They demonstrate how to build docker containers from scratch, using Neurodocker, and cover how to use containers on an HPC with singularity.

 

 

Difficulty level: Beginner
Duration: 01:21:59

Serving as good refresher, Shawn Grooms explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.

 

This compilation is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 01:00:07
Speaker: :

Linear algebra is the branch of mathematics concerning linear equations such as linear functions and their representations through matrices and vector spaces. As such, it underlies a huge variety of analyses in the neurosciences.  This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.

 

This lesson was created by RootMath.

Difficulty level: Beginner
Duration: 01:21:30
Speaker: :

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.

Difficulty level: Intermediate
Duration: 24:52
Speaker: : Katrin Amunts

This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.

Difficulty level: Intermediate
Duration: 21:57
Speaker: : Paul Boon
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

NWB: An ecosystem for neurophysiology data standardization

Difficulty level: Beginner
Duration: 29:53
Speaker: : Oliver Ruebel

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

Learn how to build and share extensions in NWB

Difficulty level: Advanced
Duration: 20:29
Speaker: : Ryan Ly

Learn how to build custom APIs for extension

Difficulty level: Advanced
Duration: 25:40
Speaker: : Andrew Tritt

Learn how to handle writing very large data in PyNWB

Difficulty level: Advanced
Duration: 26:50
Speaker: : Andrew Tritt