Skip to main content

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience. 

Difficulty level: Beginner
Duration: 5:42
Speaker: : Dan Goodman

This demonstration walks through how to import your data into MATLAB.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses. 

Difficulty level: Beginner
Duration: 15:10
Speaker: : MATLAB®

This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.

Difficulty level: Beginner
Duration: 2:49
Speaker: : MATLAB®

This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®

This brief tutorial goes over how you can easily work with big data as you would with any size of data.

Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®

In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.

Difficulty level: Beginner
Duration: 3:52
Speaker: : MATLAB®

The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

This lecture covers the description and brief history of data science and its use in neuroinformatics.

Difficulty level: Beginner
Duration: 11:15
Speaker: : Ariel Rokem

This lesson provides an overview of self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.

Difficulty level: Beginner
Duration: 25:50
Speaker: : Eva Dyer

This video gives a short introduction to the EBRAINS data sharing platform, why it was developed, and how it contributes to open data sharing.

Difficulty level: Beginner
Duration: 17:32
Speaker: : Ida Aasebø

This video introduces the key principles for data organization and explains how you could make your data FAIR for data sharing on EBRAINS.

Difficulty level: Beginner
Duration: 10:54

This lesson provides a hands-on tutorial for generating simulated brain data within the EBRAINS ecosystem. 

Difficulty level: Beginner
Duration: 32:58
Speaker: : Jil Meier