Skip to main content

Lecture on the most important concepts in software engineering

Difficulty level: Beginner
Duration: 32:59
Speaker: : Jeff Muller

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

Introduction to neurons, synaptic transmission, and ion channels.

Difficulty level: Beginner
Duration: 46:07

2nd part of the lecture. Introduction to cell receptors and signalling cascades

Difficulty level: Beginner
Duration: 41:38

Introduction to the origin and differentiation of myelinating cell types, molecular mechanisms defining onset and progression of myelination, demyelination and remyelination after injury.

Difficulty level: Beginner
Duration: 38:52

This lecture covers: integrating information within a network, modulating and controlling networks, functions and dysfunctions of hippocampal networks, and the integrative network controlling sleep and arousal.

Difficulty level: Beginner
Duration: 47:05

This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.

Difficulty level: Beginner
Duration: 28:09
Speaker: : Serena Quarta

This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases

Difficulty level: Beginner
Duration: 1:02:29
Speaker: : Nir Giladi

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 28:08
Speaker: : Carl Petersen

Spatiotemporal dynamics of the membrane potential.

Difficulty level: Beginner
Duration: 19:14
Speaker: : Carl Petersen

Action potentials, and biophysics of voltage-gated ion channels.

Difficulty level: Beginner
Duration: 27:47
Speaker: : Carl Petersen

Voltage-gating kinetics of sodium and potassium channels.

Difficulty level: Beginner
Duration: 19:20
Speaker: : Carl Petersen

The ionic basis of the action potential, including the Hodgkin Huxley model.

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 23:16
Speaker: : Carl Petersen

Neurotransmitter release in the presynaptic specialization.

Difficulty level: Beginner
Duration: 21:36
Speaker: : Carl Petersen

Synaptic modulation through diffusing neurotransmitters.

Difficulty level: Beginner
Duration: 23:00
Speaker: : Carl Petersen