The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.
This lecture gives an introduction to the European Academy of Neurology, ist recent achievements and ambitions.
This lecture presents the Medical Informatics Platform's data federation in epilepsy.
Hardware for computing for non-ICT specialists
This lecture provides a history of data management, recent developments data management, and a brief description of scientific data management.
Computer arithmetic is necessarily performed using approximations to the real numbers they are intended to represent, and consequently it is possible for the discrepancies between the actual solution and the approximate solutions to diverge, i.e. to become increasingly different. This lecture focuses on how this happens and techniques for reducing the effects of these phenomena and discuss systems which are chaotic.
This lecture will addresses what it means for a problem to have a computable solution, methods for combining computability results to analyse more complicated problems, and finally look in detail at one particular problem which has no computable solution: the halting problem.
This lecture focuses on computational complexity which lies at the heart of computer science thinking. In short, it is a way to quickly gauge an approximation to the computational resource required to perform a task. Methods to analyse a computer program and to perform the approximation are presented. Speaker: David Lester.
This lecture gives an introduction to simulation, models, and the neural simulation tool NEST.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.