Skip to main content

This lecture introduces neuroscience concepts and methods such as fMRI, visual respones in BOLD data, and the eccentricity of visual receptive fields. 

Difficulty level: Intermediate
Duration: 7:15
Speaker: : Mike X. Cohen

This tutorial walks users through the creation and visualization of activation flat maps from fMRI datasets. 

Difficulty level: Intermediate
Duration: 12:15
Speaker: : Mike X. Cohen

This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI. 

Difficulty level: Intermediate
Duration: 12:05
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB. 

Difficulty level: Intermediate
Duration: 20:12
Speaker: : Mike X. Cohen

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate
Duration: 17:54
Speaker: : Mike X. Cohen

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging. 

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time. 

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data. 

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

In this lecture, you will learn about current methods, approaches, and challenges to studying human neuroanatomy, particularly through the lense of neuroimaging data such as fMRI and diffusion tensor imaging (DTI). 

Difficulty level: Intermediate
Duration: 1:35:14
Speaker: : Matt Glasser

This lesson provides an overview of the current status in the field of neuroscientific ontologies, presenting examples of data organization and standards, particularly from neuroimaging and electrophysiology. 

Difficulty level: Intermediate
Duration: 33:41

In this final lecture of the INCF Short Course: Introduction to Neuroinformatics, you will hear about new advances in the application of machine learning methods to clinical neuroscience data. In particular, this talk discusses the performance of SynthSeg, an image segmentation tool for automated analysis of highly heterogeneous brain MRI clinical scans.

Difficulty level: Intermediate
Duration: 1:32:01

This lesson explores how researchers try to understand neural networks, particularly in the case of observing neural activity. 

Difficulty level: Intermediate
Duration: 8:20
Speaker: : Marcus Ghosh

This lecture provides an introduction to the Brain Imaging Data Structure (BIDS), a standard for organizing human neuroimaging datasets.

Difficulty level: Intermediate
Duration: 56:49

In this lesson, you will learn about the Python project Nipype, an open-source, community-developed initiative under the umbrella of NiPy. Nipype provides a uniform interface to existing neuroimaging software and facilitates interaction between these packages within a single workflow.

Difficulty level: Intermediate
Duration: 1:25:05
Speaker: : Satrajit Ghosh