Skip to main content

This is an introductory lecture on whole-brain modelling, delving into the various spatial scales of neuroscience, neural population models, and whole-brain modelling. Additionally, the clinical applications of building and testing such models are characterized. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : John Griffiths

This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.

Difficulty level: Intermediate
Duration: 22:04
Speaker: : Trygve Leergard

We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. This lecture discusses how neuroanatomy in the 21st Century has become an effort towards the virtualization and standardization of brain tissue.

Difficulty level: Intermediate
Duration: 25:27
Speaker: : Jacopo Annese

This lecture covers essential features of digital brain models for neuroinformatics, particularly NeuroMaps. 

Difficulty level: Intermediate
Duration: 22:26
Speaker: : Douglas Bowden

This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen Institute's atlases of the mouse, developing mouse, and mouse connectional atlas.

Difficulty level: Intermediate
Duration: 23:41
Speaker: : Mike Hawrylycz

This video gives a brief introduction to Neuro4ML's lessons on neuromorphic computing - the use of specialized hardware which either directly mimics brain function or is inspired by some aspect of the way the brain computes. 

Difficulty level: Intermediate
Duration: 3:56
Speaker: : Dan Goodman

In this lesson, you will learn in more detail about neuromorphic computing, that is, non-standard computational architectures that mimic some aspect of the way the brain works. 

Difficulty level: Intermediate
Duration: 10:08
Speaker: : Dan Goodman

This video provides a very quick introduction to some of the neuromorphic sensing devices, and how they offer unique, low-power applications.

Difficulty level: Intermediate
Duration: 2:37
Speaker: : Dan Goodman

This lesson presents a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Intermediate
Duration: 21:15
Speaker: : Tadashi Yamazaki

The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.

Difficulty level: Intermediate
Duration: 19:57

This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.

Difficulty level: Intermediate
Duration: 24:52
Speaker: : Katrin Amunts

This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.

Difficulty level: Intermediate
Duration: 21:57
Speaker: : Paul Boon

This lesson provides an overview of the current status in the field of neuroscientific ontologies, presenting examples of data organization and standards, particularly from neuroimaging and electrophysiology. 

Difficulty level: Intermediate
Duration: 33:41

Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation. 

Difficulty level: Intermediate
Duration: 6:58
Speaker: : Marcus Ghosh

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication? 

Difficulty level: Intermediate
Duration: 9:34
Speaker: : Dan Goodman

This lecture covers NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support validating single-neuron models using data gathered by neurophysiologists.

Difficulty level: Intermediate
Duration: 17:21
Speaker: : Richard Gerkin

This lesson provides an introduction to the NeuroElectro project, which aims to organize information on cellular neurophysiology.

Difficulty level: Intermediate
Duration: 17:41

This lesson covers simultaneously recorded neurons in non-human primates coordinate their spiking activity in a sequential manner that mirrors the dominant wave propagation directions of the local field potentials.

Difficulty level: Intermediate
Duration: 26:54

This talk covers statistical analysis of spike train data, the modeling approach GLM, and the problem of assessing neural synchrony.

Difficulty level: Intermediate
Duration: 25:17
Speaker: : Rob Kass