This lecture covers NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support validating single-neuron models using data gathered by neurophysiologists.
An introduction to the NeuroElectro project, which aims to organize information on cellular neurophysiology. Speaker: Shreejoy Tripathy
The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.
Simultaneously recorded neurons in non-human primates coordinate their spiking activity in a sequential manner that mirrors the dominant wave propagation directions of the local field potentials.
This talk covers statistical analysis of spike train data, the modeling approach GLM, and the problem of assessing neural synchrony.
This talk covers statistical methods for characterizing neural population responses and extracting structure from high-dimensional neural data.
This presentation covers research to understand the activity of single neurons and populations of neurons in the visual system.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Next generation science with Jupyter. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python
Learn how to create a standard calcium imaging dataset in NWB using Python
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm
Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB
Learn how to create a standard calcium imaging dataset in NWB using MATLAB
Learn how to create a standard intracellular electrophysiology dataset in NWB
Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition
Overview of the CaImAn package, and demonstration of usage with NWB
Overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters