Course:

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

Course:

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.

Difficulty level: Intermediate

Duration: 1:16:10

Speaker: : John Griffiths

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate

Duration: 10:01

This lesson provides a brief introduction to the *Computational Modeling of Neuronal Plasticity.*

Difficulty level: Intermediate

Duration: 0:40

Speaker: : Florence I. Kleberg

In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.

Difficulty level: Intermediate

Duration: 1:23

Speaker: : Florence I. Kleberg

This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.

Difficulty level: Intermediate

Duration: 1:20

Speaker: : Florence I. Kleberg

This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.

Difficulty level: Intermediate

Duration: 1:08

Speaker: : Florence I. Kleberg

In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.

Difficulty level: Intermediate

Duration: 1:18

Speaker: : Florence I. Kleberg

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate

Duration: 1:26

Speaker: : Florence I. Kleberg

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate

Duration: 0:42

Speaker: : Florence I. Kleberg

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate

Duration: 2:40

Speaker: : Florence I. Kleberg

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate

Duration: 2:54

Speaker: : Florence I. Kleberg

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate

Duration: 1:43

Speaker: : Florence I. Kleberg

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate

Duration: 2:58

Speaker: : Florence I. Kleberg

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate

Duration: 2:08

Speaker: : Florence I. Kleberg

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate

Duration: 1:58

Speaker: : Florence I. Kleberg

- Programming Languages (32)
- Bayesian networks (1)
- Cognitive neuroinformatics (1)
- Neuroimaging (16)
- (-) Machine learning (1)
- Software engineering (1)
- Neuromorphic engineering (1)
- Standards and best practices (3)
- Tools (1)
- Animal models (1)
- Brain-hardware interfaces (1)
- General neuroscience (7)
- (-) Computational neuroscience (21)
- Statistics (3)
- Genomics (5)
- Data science (1)
- Open science (3)