Skip to main content

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 8:21
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 22:01
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 11:20
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 20:39
Speaker: : Mike X. Cohen

This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.

Difficulty level: Intermediate
Duration: 24:52
Speaker: : Katrin Amunts

This lecture gives an introduction to the European Academy of Neurology, ist recent achievements and ambitions.

Difficulty level: Intermediate
Duration: 21:57
Speaker: : Paul Boon

Along the example of a patient with bi-temporal epilepsy, we show step by step how to develop a Virtual Epileptic Patient (VEP) brain model and integrate patient-specific information such as brain connectivity, epileptogenic zone and MRI lesions. The patient's brain network model is then evaluated via simulation, data fitting and mathematical analysis. This lecture demonstrates how to develop novel personalized strategies towards therapy and intervention using TVB.

Difficulty level: Intermediate
Duration: 48:57
Speaker: : Julie Courtiol

This lecture focuses on higher-level simulation scenarios using stimulation protocols. We demonstrate how to build stimulation patterns in TVB, and use them in a simulation to induced activity dissipating into experimentally known resting-state networks in human and mouse brain, a well as to obtain EEG recordings reproducing empirical findings of other researchers.

Difficulty level: Intermediate
Duration: 47:14
Speaker: : Andreas Spiegler

Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

Difficulty level: Intermediate
Duration: 10:01
Speaker: :

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

Next generation science with Jupyter. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:28
Speaker: : Elizabeth DuPre

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter

Learn how to create a standard calcium imaging dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 39:10
Speaker: : Ben Dichter

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker

Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition

Difficulty level: Intermediate
Duration: 47:47

Overview of the CaImAn package, and demonstration of usage with NWB

Difficulty level: Intermediate
Duration: 44:37