This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate

Duration: 2:15:50

Speaker: : Elizabeth DuPre

Course:

This lecture describes the principles of EEG electrode placement in both 2- and 3-dimensional formats.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

This tutorial walks users through performing Fourier Transform (FFT) spectral analysis of a single EEG channel using MATLAB.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

This tutorial builds on the previous lesson's demonstration of spectral analysis of one EEG channel. Here, users will learn how to compute and visualize spectral power from all EEG channels using MATLAB.

Difficulty level: Intermediate

Duration: 12:34

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn more about the steady-state visually evoked potential (SSEVP), as well as how to create and interpret topographical maps derived from such studies.

Difficulty level: Intermediate

Duration: 9:10

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to extract edogenous brain waves from EEG data, specifically oscillations constrained to the 8-12 Hz frequency band, conventionally named alpha.

Difficulty level: Intermediate

Duration: 13:23

Speaker: : Mike X. Cohen

Course:

In the final lesson of this module, users will learn how to correlate endogenous alpha power with SSVEP amplitude from EEG data using MATLAB.

Difficulty level: Intermediate

Duration: 12:36

Speaker: : Mike X. Cohen

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate

Duration: 1:30:41

Speaker: : Frank Mazza

Course:

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.

Difficulty level: Intermediate

Duration: 1:16:10

Speaker: : John Griffiths

This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.

Difficulty level: Intermediate

Duration: 1:40:52

Speaker: : Paul Triebkorn

Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.

Difficulty level: Intermediate

Duration: 4:10

Speaker: : Dan Goodman

Course:

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.

Difficulty level: Intermediate

Duration: 50:44

Speaker: : Caterina Gratton

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course.

Difficulty level: Intermediate

Duration: 5:58

Speaker: : Dan Goodman

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, *Understanding Neural Networks*.

Difficulty level: Intermediate

Duration: 2:43

Speaker: : Marcus Ghosh

Course:

This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.

Difficulty level: Intermediate

Duration: 2:22:28

Speaker: : Jake Vanderplas

This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter.

Difficulty level: Intermediate

Duration: 39:05

Speaker: : Jil Meier

This lecture provides an general introduction to epilepsy, as well as why and how TVB can prove useful in building and testing epileptic models.

Difficulty level: Intermediate

Duration: 37:12

Speaker: : Julie Courtiol

Course:

This lecture covers the rationale for developing the DAQCORD, a framework for the design, documentation, and reporting of data curation methods in order to advance the scientific rigour, reproducibility, and analysis of data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Ari Ercole

- (-) Clinical neuroinformatics (5)
- Standards and Best Practices (1)
- Bayesian networks (1)
- Notebooks (1)
- Neuroimaging (19)
- (-) Machine learning (4)
- EBRAINS RI (2)
- Standards and best practices (4)
- Tools (11)
- Workflows (4)
- Animal models (1)
- Clinical neuroscience (2)
- General neuroscience (7)
- Computational neuroscience (29)
- Statistics (3)
- (-) Computer Science (1)
- Genomics (6)
- Data science (4)
- Open science (5)
- Project management (1)