This lecture 1/15 is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (2/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (3/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (4/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (5/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (6/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures. Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (7/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (8/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (9/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (10/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (11/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (12/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (13/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures. Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (14/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This lecture (15/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.
Authors: Florence I. Kleberg and Prof. Jochen Triesch.
This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.
This lecture gives an introduction to the European Academy of Neurology, ist recent achievements and ambitions.
This lecture discusses differential privacy and synthetic data in the context of medical data sharing in clinical neurosciences.
This talk presents state-of-the-art methods for ensuring data privacy with a particular focus on medical data sharing across multiple organizations.