This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.
This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.
In this lesson you will learn how machine learners and neuroscientists construct abstract computational models based on various neurophysiological signalling properties.
In this lesson, you will learn about some typical neuronal models employed by machine learners and computational neuroscientists, meant to imitate the biophysical properties of real neurons.
This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course.
While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.
In this lesson, you will learn about how machine learners and computational neuroscientists design and build models of neuronal synapses.
This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.
This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.
This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.
In this lesson, you will learn more about some of the issues inherent in modeling neural spikes, approaches to ameliorate these problems, and the pros and cons of these approaches.
In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way.
In this lesson, you will learn how to train spiking neural networks (SNNs) with a surrogate gradient method.
In this lesson, you will hear about some of the open issues in the field of neuroscience, as well as a discussion about whether neuroscience works, and how can we know?
This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.
This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons.
In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks.
This lesson continues discussing properties of neural oscillations and networks.
In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.
This lesson provides a continued discussion and characterization of coupled oscillators.