This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
A quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science. Includes the use of readr, dplyr, tidyr, and ggplot2.
Introduction to the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics
This lecture covers self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.
KnowledgeSpace is a community-based encyclopedia that links brain research concepts to data, models, and literature. It provides users with access to anatomy, gene expression, models, morphology, and physiology data from over 15 different neuroscience data/model repositories, such as Allen Institute for Brain Science and the Human Brain Project.