This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
This brief tutorial goes over how you can easily work with big data as you would with any size of data.
In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.
This tutorial provides instruction on how to interact with and leverage Python packages to get the most out of Python's suite of available tools for the manipulation, management, analysis, and visualization of neuroscientific data.
This tutorial teaches users how to use Pandas objects to help store and manipulate various datasets in Python.
In this lesson, users can follow along as a spaghetti script written in MATLAB is turned into understandable and reusable code living happily in a powerful GitHub repository.
This lesson gives a general introduction to the essentials of navigating through a Bash terminal environment. The lesson is based on the Software Carpentries "Introduction to the Shell" and was given in the context of the BrainHack School 2020.
This lesson covers Python applications to data analysis, demonstrating why it has become ubiquitous in data science and neuroscience. The lesson was given in the context of the BrainHack School 2020.
This short video walks you through the steps of publishing a dataset on brainlife, an open-source, free and secure reproducible neuroscience analysis platform.
This video shows how to use the brainlife.io interface to edit the participants' info file. This file is the ParticipantInfo.json file of the Brain Imaging Data Structure (BIDS).
This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.
This video will document the process of visualizing the provenance of each step performed to generate a data object on brainlife.
This video will document the process of downloading and running the "reproduce.sh" script, which will automatically run all of the steps to generate a data object locally on a user's machine.
This video will document the process of creating a pipeline rule for batch processing on brainlife.
This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.
This brief video walks you through the steps necessary when creating a project on brainlife.io.
This brief video rus through how to make an accout on brainlife.io.
This video will document how to run a correlation analysis between the gray matter volume of two different structures using the output from brainlife app-freesurfer-stats.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.
As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services.