Skip to main content

This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI. 

Difficulty level: Intermediate
Duration: 12:05
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB. 

Difficulty level: Intermediate
Duration: 20:12
Speaker: : Mike X. Cohen

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate
Duration: 17:54
Speaker: : Mike X. Cohen

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging. 

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time. 

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data. 

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics. 

Difficulty level: Intermediate
Duration: 1:27:18
Speaker: : Dan Felsky

This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses. 

Difficulty level: Intermediate
Duration: 1:53:34
Speaker: : Dan Felsky

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat. 

Difficulty level: Intermediate
Duration: 1:19:17
Speaker: : Sonny Chen

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:51
Speaker: : Dan Goodman