Skip to main content

In this lesson, you will learn in more detail about neuromorphic computing, that is, non-standard computational architectures that mimic some aspect of the way the brain works. 

Difficulty level: Intermediate
Duration: 10:08
Speaker: : Dan Goodman

This video provides a very quick introduction to some of the neuromorphic sensing devices, and how they offer unique, low-power applications.

Difficulty level: Intermediate
Duration: 2:37
Speaker: : Dan Goodman

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health. 

Difficulty level: Intermediate
Duration: 1:47:22

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 34:52
Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 57.45
Speaker: : Moritz Wolter

Support Vector Machines -  Day 06 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 53.39
Speaker: : Elena Trunz

Decision Trees and Random Forests -  Day 07 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 1:15:39
Speaker: : Elena Trunz

Clustering and Density Estimation -  Day 08 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 59:35
Speaker: : Elena Trunz

Dimensionality Reduction -  Day 09 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 51:02
Speaker: : Elena Trunz

Introduction to Neural Networks -  Day 10 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 54:12
Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks  -  Day 11 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

Initialization, Optimization, and Regularization  -  Day 12 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation  -  Day 13 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 16:45
Speaker: : Moritz Wolter

Sequence Processing -  Day 15 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 47:45
Speaker: : Moritz Wolter

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time. 

Difficulty level: Intermediate
Duration: 4:48
Speaker: : Marcus Ghosh

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre