This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.

This lesson corresponds to slides 1-64 in the PDF below.

Difficulty level: Intermediate

Duration: 1:28:14

Speaker: : Andreea Diaconescu

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 34:52

Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 57.45

Speaker: : Moritz Wolter

*Support Vector Machines* - Day 06 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 53.39

Speaker: : Elena Trunz

Decision Trees and Random Forests - Day 07 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 1:15:39

Speaker: : Elena Trunz

*Clustering and Density Estimation* - Day 08 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 59:35

Speaker: : Elena Trunz

*Dimensionality Reduction* - Day 09 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 51:02

Speaker: : Elena Trunz

*Introduction to Neural Networks *- Day 10 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 54:12

Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks* *- Day 11 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

*Initialization, Optimization, and Regularization** *- Day 12 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation* *- Day 13 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 16:45

Speaker: : Moritz Wolter

Sequence Processing - Day 15 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 47:45

Speaker: : Moritz Wolter

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:05

Speaker: : Dan Goodman

This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.

Difficulty level: Intermediate

Duration: 6:33

Speaker: : Marcus Ghosh

In this lesson you will learn how machine learners and neuroscientists construct abstract computational models based on various neurophysiological signalling properties.

Difficulty level: Intermediate

Duration: 10:52

Speaker: : Dan Goodman

This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.

Difficulty level: Intermediate

Duration: 7:03

Speaker: : Marcus Ghosh

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.

Difficulty level: Intermediate

Duration: 4:48

Speaker: : Marcus Ghosh

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.

Difficulty level: Intermediate

Duration: 12:50

Speaker: : Dan Goodman

In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way.

Difficulty level: Intermediate

Duration: 5:14

Speaker: : Dan Goodman

In this lesson, you will learn how to train spiking neural networks (SNNs) with a surrogate gradient method.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Dan Goodman

- Standards and Best Practices (1)
- Bayesian networks (1)
- Machine learning (19)
- Brain-hardware interfaces (1)
- Clinical neuroscience (1)
- (-) General neuroscience (8)
- (-) General neuroinformatics (11)
- (-) Computational neuroscience (6)
- Statistics (2)
- (-) Computer Science (2)
- Genomics (3)
- Data science (1)
- Open science (2)