Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.

Difficulty level: Intermediate

Duration: 4:10

Speaker: : Dan Goodman

Course:

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.

Difficulty level: Intermediate

Duration: 50:44

Speaker: : Caterina Gratton

Course:

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced

Duration: 50:28

Speaker: : Pierre Bellec

This lecture covers concepts associated with neural nets, including rotation and squashing, and is a part of the Deep Learning Course at New York University's Center for Data Science (CDS).

Difficulty level: Intermediate

Duration: 1:01:53

Speaker: : Alfredo Canziani

This lecture covers the concept of neural nets training (tools, classification with neural nets, and PyTorch implementation) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:05:47

Speaker: : Alfredo Canziani

This lecture discusses the concept of natural signals properties and the convolutional nets in practice and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:09:12

Speaker: : Alfredo Canziani

This lecture covers the concept of recurrent neural networks: vanilla and gated (LSTM) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:05:36

Speaker: : Alfredo Canziani

This lecture covers the concept of inference in latent variable energy based models (LV-EBMs) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:01:04

Speaker: : Alfredo Canziani

This tutorial covers the concept of training latent variable energy based models (LV-EBMs) and is is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:04:48

Speaker: : Alfredo Canziani

This tutorial covers LV-EBM to target prop to (vanilla, denoising, contractive, variational) autoencoder and is a part of the Advanced Energy-Based Models module of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, Energy-Based Models IV, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:00:34

Speaker: : Alfredo Canziani

This tutorial covers the concepts of autoencoders, denoising encoders, and variational autoencoders (VAE) with PyTorch, as well as generative adversarial networks and code. It is a part of the Advanced energy based models modules of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, Energy-Based Models IV, Energy-Based Models V, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:07:50

Speaker: : Alfredo Canziani

This tutorial covers advanced concept of energy-based models. The lecture is a part of the Associative Memories module of the the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Advanced

Duration: 1:12:00

Speaker: : Alfredo Canziani

Course:

This tutuorial covers the concept of graph convolutional networks and is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Modules 1 - 5 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 57:33

Speaker: : Alfredo Canziani

Course:

This lecture covers the concept of model predictive control and is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Models 1-6 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:10:22

Speaker: : Alfredo Canziani

Course:

This lecture covers the concepts of emulation of kinematics from observations and training a policy. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Models 1-6 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:01:21

Speaker: : Alfredo Canziani

Course:

This lecture covers the concept of predictive policy learning under uncertainty and is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Models 1-6 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:14:44

Speaker: : Alfredo Canziani

Course:

This lecture continues on the topic of descent from the previous lesson, Optimization I. This lesson is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Models 1-7 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:51:32

Speaker: : Alfredo Canziani

Course:

This lecture covers the rationale for developing the DAQCORD, a framework for the design, documentation, and reporting of data curation methods in order to advance the scientific rigour, reproducibility, and analysis of data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Ari Ercole

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

- Bayesian networks (2)
- Clinical neuroinformatics (2)
- Standards and Best Practices (1)
- Notebooks (1)
- Neuroimaging (20)
- Machine learning (4)
- Tools (7)
- Workflows (2)
- Animal models (1)
- (-) Clinical neuroscience (1)
- General neuroscience (6)
- Computational neuroscience (18)
- Statistics (3)
- Computer Science (1)
- Genomics (5)
- (-) Data science (2)
- Open science (4)